160 likes | 184 Vues
Parameter Estimation. Chapter 7 Interval estimation & Confidence interval. Parameters. Let X 1 , X 2 , X 3 , … X n be a random sample from a distribution F θ that is specified up to a vector of unknown parameter θ.
E N D
Parameter Estimation Chapter 7 Interval estimation & Confidence interval
Parameters • Let X1, X2, X3, …Xn be a random sample from a distribution Fθ that is specified up to a vector of unknown parameter θ. • E.g., this sample derived from a normal distribution with unknown mean μ and variance σ2; from a Poisson distribution with unknown λ; from a binomial distribution with unknown p, etc.
Maximum likelihood estimators • Suppose the i.i.d. random variables X1, X2, …Xn, whose joint distribution is assumed given except for an unknown parameter θ, are to be observed and constituted a random sample. • The problem of interest is to use the observed values to estimate the unknown θ. • f(x1,x2,…,xn)=f(x1)f(x2)…f(xn), • if f(xi) is the exponential distribution, then f(x1,x2,…,xn) • = (1/θ)n exp{-(x1+x2+…xn)/ θ} (a function of θ) • The value of likelihood function f(x1,x2,…,xn/θ) will be determined by the observed sample (x1,x2,…,xn)if the true value of θ couldalso befound.
Confidence interval • Specify an interval for which we obtain a certain degree of confidence that a specific parameter lies within. • Suppose that X1,X2,…Xn is a sample from a normal population having unknown μ and known σ.
The lower or upper 95% confidence interval • One-side upper confidence interval: (, ∞) • One-side lower confidence interval: (-∞,)
Confidence interval for the normal mean μ given an unknown σ
Confidence interval for the difference between two normal populations
Confidence interval for the difference between two normal populations (cont.)
Approximate confidence interval for the mean of a Bernoulli random variable
Homework #6 • Problem 1,11,28,41,47,54
Optional homework • 某一醉漢踉蹌於左右各寬12步,長約100步的碼頭,原本欲至頂端處搭船,竟在途中墜落海中,保險公司聲稱該醉漢為自殺而非意外,拒絕支付理賠金。 • 根據觀察,一般醉漢踉蹌實為左右隨機,並沒有傾向任一方的現象。 • 雖有目擊者看到該墜海的醉漢最初是走在碼頭的中央線,但家屬仍聲稱隨機機率並不能代表特定的意外事件,就像擲銅板10次,也不能保証正反兩面各有5次,因而請求法院仲裁。你身為法官,應該如何判決?