1 / 30

CS412/413

CS412/413. Introduction to Compilers and Translators Spring ’99 Lecture 10: More Type Checking. Administration. Homework 2 due Friday. Review. During type checking, associate types from a type system with expressions and variables in program

mahala
Télécharger la présentation

CS412/413

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS412/413 Introduction to Compilers and Translators Spring ’99 Lecture 10: More Type Checking

  2. Administration • Homework 2 due Friday CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  3. Review • During type checking, associate types from a type system with expressions and variables in program • Types: primitive types, type constructors, pseudo-types (e.g. void, error) • Type constructors: • Arrays: array(T) • Records/structs: {id1 : T1, id2 : T2, … } • Functions: T1T2 T1T2 ... Tn Tr CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  4. Review • Formally symbol table is map from identifiers to types, referred to as type-checking environment A = { id1 : T1, id2 : T2, … } • Type checking is attempt to make typejudgments A |– E : T means “ in the environment A, expression E has type T ” CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  5. Review • Type inference rules allow precise, compact expression of type-checking process • Semantic analysis corresponds to working backwards through inference rules A |– E : bool A |– !E : bool ! bool? E What if can’t get desired type judgment? CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  6. Function-checking rule • Notation: A|– [ F ] means F is type-safe • Create an environment A containing all the argument variables • Check the body E in this environment • Type of E must match declared return type of function A { ..., ai : Ti, ...} |–E : T A|– [ id ( ..., ai : Ti, ...) : T = E ] CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  7. Example fact(x: int) : int = { if (x==0) 1; else x * fact(x - 1); } A |–[fact(x: int) : int = {…} ] A  {x : int} |– if (x==0) ...; else ... : int A  {x : int} |– x==0 : bool A  {x : int} |– x : T1 (T1 = int) A  {x : int} |– 0 : int A  {x : int} |– 1 : T2 (T2 = int) A  {x : int} |– x * fact(x-1) : int CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  8. Remainder of proof A  {x : int} |– x * fact(x-1) : int A  {x : int} |– x : int A  {x : int} |– fact(x-1) : int A  {x : int} |– x-1 : int A  {x : int} |– x : int A  {x : int} |– 1 : int A  {x : int} |– fact : intint CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  9. Sequence • Rule: A sequence of statements is type-safe if the first statement is type-safe, and the remaining are type-safe too: A |– S1: T1 A |– S2 S3 ...Sn : T A |–S1 S2 ...Sn : T • What about variable declarations ? CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  10. Declarations A |– id: T1 [ = E ] : T1 A  { id : T1} |– S2 ...Sn : T A |– id : T1 [ = E ]; S2 ...Sn : Tn • This formally describes the type-checking code from two lectures ago! CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  11. Implementation class Block { Stmt stmts[]; Type typeCheck(SymTab s) { Type t; for (int i = 0; i < stmts.length; i++) { t = stmts[i].typeCheck(s); if (stmts[i] instanceof Decl) s = s.add(Decl.id, Decl.typeExpr.evaluate()); } return t; } } A |– S1: T1 S1 not a decl. A |– S2 S3...Sn : T A |– S1 S2 ...Sn : T A |– id: T1 [ = E ] : T1 A  { id : T1} |– S2 ...Sn : T A |– id : T1 [ = E ]; S2 ...Sn : T CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  12. Completing static semantics • Rest of static semantics can be written in this style • Provides complete recipe (inductively) for how to show a program type-safe • Induction: • have rules for atoms: A |– true : bool • for every valid syntactic construct in language, have a rule showing how to prove it type-safe • Therefore, have rules for checking all syntactically valid programs for type safety CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  13. Implementing Rules • Start from goal judgments for each function A |– [ id ( ..., ai : Ti, ...) : T = E ] • Work backward applying inference rules to sub-trees of abstract syntax trees • Same recursive traversal described earlier • Need efficient way to create new environments , e.g. for A  { id : T1} |– S2 ...Sn : T CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  14. Implementing Types • How do we represent types during type checking? Need a data structure. • Types need operations: • creation from type expressions in the program interpretType(AST_node n, SymTab s); • ability to be checked for equivalence • application of type constructors CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  15. Type Class abstract class Type { boolean equals(Type t); // type equivalence void unparse(OutputStream o) // for debugging } CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  16. Primitive Types class PrimitiveType extends Type { string name; boolean equals(Type t) { return this == t; } void unparse(OutputStream o){ o.print(name); } } CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  17. Type Constructor: Array class ArrayType extends Type { Type T; // represents the type array[T] Array(Type t) { T = t; } boolean equals(Type t) { if (t instanceof ArrayType && ((ArrayType)t).T.equals(T)) return true; else return false; } CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  18. Type Equivalence • Structural equivalence vs. name equivalence • Record types in C: struct Point { int x,y; }; struct Range { int low, int high; } struct Point2 { int x, y; } struct Point3 { int y, x; } • Name equivalence: all different since created by different constructor invocations • Structural equivalence: depends on structure • possibilities: all same, Point=Point2, =Point3 CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  19. Type Equivalence, Formally • Add a new kind of judgment: A |– T1 = T2 • Meaning: types T1 and T2 are equivalent in environment A • Axioms: A |– int = int, A |– bool = bool • Arrays: A |– T1 = T2 A |– array(T1) = array(T2) CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  20. Record Equivalence • Name equivalence: record type has a name generated (or assigned) at declaration n1 = n2 A |– n1{id1 : T1…} = n2{id1 : T1…} • Structural equivalence: field names & types must match m = n idi = id’iA |– Ti = T’i A |– {id1:T1...idn:Tn} = {id’1:T’1… id’m: T’m} CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  21. Interpreting Types • Iota: type ::= id | array[ type ] • Suppose type : TypeExpr class TypeId extends TypeExpr class ArrayTypeExpr extends TypeExpr CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  22. Interpreting Types abstract class TypeExpr { Type interpret(SymTab A); } class TypeId { string name; Type interpret(SymTab A) { if (name.equals(“int”)) return Int; if (name.equals(“string”)) return Str; ... CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  23. Interpreting Arrays class ArrayTypeExpr extends TypeExpr { TypeExpr te; Type interpret(SymTab A) { return new ArrayType(te.interpret()); } } CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  24. More language features • Recursive definitions & forward decls • Returns and exceptions • Subtyping • Classes • Inheritance • Parametric polymorphism CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  25. Handling Recursion A |–[ fact(x: int) : int = { if (x==0) 1; else x * fact(x - 1); } ] • To type-check this, A must contain entry fact : int  int • Java, Iota: functions (methods, classes) may be mutually recursive. f(x: int) : int = {if (x<1) 1; else g(f(x-1)); } g(x: int) : int = {if (x<1) 2; else f(g(x-1)); } CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  26. Handling Recursion • Need environment containing at least {f: int  int, g: int  int} when checking both f and g • Two-step approach: • Scan top level of AST picking up all function signatures and creating an environment binding all global identifiers • Type-check each function individually using this global environment CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  27. Non-local control flow • How to check non-local control transfers? • return, throw, break, continue • Fits into existing framework for type checking (mostly) • Question: what is the type of a return statement? A |– returnE : ? CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  28. How to check return? A |– E : T A |– returnE : void • A return statement has no value, so its type is void • But… how do make sure the return type of the current function is T ? CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  29. Answer: put it in the symbol table • Add entry {return : int } when we start checking the function, look up this entry when we hit a return statement. A’ = A { ..., ai : Ti, ...}  {return : T} A { ..., ai : Ti, ...} |–E : T A|– [ id ( ..., ai : Ti, ...) : T = E ] A |– E : T {return : T}  A A |– returnE : void CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

  30. Summary • Type systems and static semantics • Type-checking functions • How bindings are added to environment • local variables • global definitions (possibly recursive) • Representing, interpreting types • Type equivalence • return statement CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers

More Related