1 / 12

CHAPTER 23

CHAPTER 23. Metabolism and Energy Production. What happens after glycolysis?. When oxygen is present (under aerobic conditions)… The acetyl-CoA is sent into the citric acid cycle, which is followed by the electron transport chain. The latter process makes most of the ATP.

mahina
Télécharger la présentation

CHAPTER 23

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHAPTER 23 Metabolism and Energy Production

  2. What happens after glycolysis? • When oxygen is present (under aerobic conditions)… • The acetyl-CoA is sent into the citric acid cycle, which is followed by the electron transport chain. • The latter process makes most of the ATP.

  3. A. The Citric Acid Cycle • Overall, a series of reactions that degrade acetyl-CoA to CO2 and energy • This energy is used to produce NADH and FADH2 • NADH and FADH2 are the “electron limousines” that shuttle the electrons to the electron transport chain, where they are used to generate a lot of ATP.

  4. Summary of Products: Citric Acid Cycle • You get… • 2 CO2 • 3 NADH • 1 FADH2 • 1 GTP which is used to form ATP • **These are the products from ONE acetyl-CoA. Double those numbers if you are considering the products from one glucose molecule through the whole process.

  5. Citric Acid Cycle Regulation • Function of citric acid cycle: generate ATP • So, when the cell needs energy, pyruvate is converted to acetyl-CoA, and the citric acid cycle proceeds. • But when the cell has sufficient energy, there is not much conversion to acetyl-CoA, and the citric acid cycle slows.

  6. B. Electron Carriers • What have we obtained so far in terms of energy-carrying molecules? From One Glucose ATP Coenzymes Glycolysis 2 2 NADH 2 pyruvate --> 2 acetyl-CoA 2 NADH Citric acid cycle 2 6 NADH 2 FADH2

  7. How Do The Electron Carriers Work? • After glycolysis and the citric acid cycle, these carriers are in the reduced form. • As they are oxidized later on, they provide energy for the synthesis of ATP. • In the electron transport chain (which follows the citric acid cycle), electrons are passed from one intermembrane protein to the next until they combine with oxygen to form H2O. http://www.science.smith.edu/departments/Biology/Bio231/etc.html

  8. C. Oxidative Phosphorylation and ATP • Oxidative phosphorylation: the production of ATP from ADP and Pi using the energy released during the electron transport chain • Chemiosmotic model links this energy to a proton gradient. • As electrons are passed along the chain, H+ is passed into the intermembrane space. • A proton gradient is created, whereby the intermembrane space has both a positive charge and a lower pH. • The energy generated by this gradient is used by ATP synthase to drive the synthesis of ATP.

  9. Creation of Proton Gradient

  10. D. ATP Energy from Glucose • How much ATP do you get from all of these processes? • ATP from glycolysis: • 2 NADH (which, long-term, give you 4 ATP) + 2 ATP = 6 ATP • Conversion of pyruvate --> acetyl-CoA: • 2 NADH (one per pyruvate) = 6 ATP • Citric acid cycle • From each acetyl-CoA: 3 NADH, one FADH2, one ATP which will, total, give 24 ATP • The combination of it all: 36 ATP per glucose.

  11. Oxidation of Glucose

  12. What Happens To All This Glucose? • If there is extra glucose around -- in excess of what our cells need for energy -- what happens to it? • If glucose levels in the brain or blood get low, what does the body do? • Glucose can also be synthesized from non-carbohydrate sources as needed.

More Related