1 / 55

Double-CH  13  13 Z

Double-CH  13  13 Z. H. De Kerret (APC) On behalf the Double-Chooz proto-collaboration June 9 2004. n e  n x. Best current constraint: CHOOZ.  e   e (disappearance experiment) P th = 8.5 GW th , L = 1,1 km, M = 5t overburden: 300 mwe. R = 1.01  2.8%(stat)2.7%(syst).

makoto
Télécharger la présentation

Double-CH  13  13 Z

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Double-CH1313Z H. De Kerret (APC) On behalf the Double-Chooz proto-collaboration June 9 2004

  2. ne nx Best current constraint: CHOOZ e e (disappearance experiment) Pth= 8.5 GWth, L = 1,1 km, M = 5toverburden: 300 mwe R = 1.01  2.8%(stat)2.7%(syst) World best constraint ! @m2atm=2 10-3 eV2 sin22θ13 < 0.2 (90% C.L) M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374

  3. e e,, The Double-CHOOZ concept D1 = 100-200 m D2 = 1050 m CHOOZ power station Near detector Far detector • anti-e flux (uranium 235, 238 & plutonium 239, 241) • Reaction: e + p  e+ + n, <E>~ 4 MeV, Ethresholdl =1.8 MeV • Dissapearance experiement • Search for a departure from the 1/D2 behavior

  4. CHOOZ site & Detector Overview e

  5. Double-Chooz, Ardennes, France Chooz-Near Chooz-Far Near site: D~100-200 m, overburden 50-80 mwe Far site: D~1.1 km, overburden 300 mwe V=2 x 12,67 m3, Dp=100-200m, Dl=1050m

  6. 250 m 125 m The CHOOZ-near site Near detector @100-200 m from the cores Exact position under study, in collaboration with EDF

  7. Correlations: - time :   30s- space 3e : < 1m3 • • Energy measurement of the e+, => En • Neutron capture on Gd, ED≈8 MeV Detect the antineutrino e + p  e+ + n The target is the active medium : - liquid scintillator loadedat ≈ 0.1 % en Gd Important progress from LENS

  8. The CHOOZ-near detector ~10-20 m Dense material ~5- 15 m

  9. Detector design • A scintillating buffer around the target (to see the gammas from positron capture and Gd decays) ~60 cm • A non scintillating buffer in front of pmts (reduce the single rates) ~ 1m • A muon veto • Increase as much as possible the active buffer for the fast neutrons coming from outside

  10. The CHOOZ-far detector shielding: 0,15m steel 7 m  target:80% dodécane + 20% PXE + 0.1% Gd (acrylix, r=1,2m, h = 2,8m, 12,7 m3) -catcher: 80% dodécane + 20% PXE (acrylique, r+0,6m – V= 28,1 m3) 7 m non-scintillating buffer: same liquid (+ quencher?) (r+0.95m, , V=100 m3) 7 m PMTs supporting structure Muon VETO: scintillating oil (r+0.6 m – V=110 m3) Existing pit

  11. Scintillator Overview

  12. R-COO- 3+Gd 3+Gd R-COO- (R-COOH)x -OOC-R Gd-Acac Gadolinium doped scintillator • Goal: 0.1% Gd loaded scintillator Light yield ~8000 /MeV + attenuation length > 5m STABLE Compatible with acrylic • R&D LENS 1998-2004 • Carboxylate based scintillator • Beta dikitonates based scintillator Carboxylate

  13. Scintillator development Gd-ACAC • Baseline • PC (C9H12), PXE (C16H18) attack acrylics • Dodécane + PXE more resistant … • R&D Saclay+MPIK+Gran Sasso (08/2004) • Flours concentration • Match scintillation light to PMTs • PPO : 6g/l • BisMSB: 20mg/l Baseline: 80% dodecane + 20% PXE + 6 g/l PPO + 20 mg/l BisMSB + 0.1% Gd LY~8000 /MeV , L = 5-10 meters

  14. Scintillator R&D • R&D 1/ Long term stability  2004 2/ scintillator-acrylic compatibility • Ageing test @50o (Saclay , Gran Sasso/INR, MPIK) • Material compatibility test (Saclay , MPIK) • Saclay  acrylic envelop design in progress First ageing test @40o, 50o (Caroxylates, Gran Sasso / INR) (scintillator tests, Saclay)

  15. Sensitivity &Discovery Potential

  16. Description of the simulation Analyse standard Expected events / bin i: NiA( sin2(213)gen ) Tested spectrum OiA: Theoretical prediction : TiA= (1 + a + bA + ci) x NiA( sin2(213)rec)

  17. 90% C.L. sensitivity if sin2(213)=0 m2=2.0 10-3 eV2 3 years (efficiency included) sin2(213)<0.03 m2=2.4 10-3 eV2 3 years (efficiency included) sin2(213)<0.024

  18. Relative normalisation error m2=2.0 10-3 eV2 3 years (efficiency included)

  19. Influence of flat backgrounds Th. Lasserre

  20. Influence of the shape error Th. Lasserre

  21. Lindner’s analysis of Double-CHOOZ sensitivity

  22. 340 tons, 3 years 12.7 tons, 3 years P. Huber et. al. hep/0403068 Lindner’s analysis of Double-CHOOZ sensitivity e

  23. P. Huber et. al. hep/0403068 Attempt to compare Double-Chooz with Beams & Superbrams m2=2.0 10-3 eV2 Double-CHOOZ starts with two detectors on 01/01/2008 T2K starts at FULL intensity on 01/01/2010

  24. e oscillation @Double-CHOOZ @1,05 km e

  25. Spectrum deformation @Double-CHOOZ sin2(213)=0.15

  26. Double-CHOOZ discovery potential Th. Lasserre

  27. Double-CHOOZ discovery potential

  28. CompareDouble-Chooz & T2K (limite @90% C.L.) I

  29. sin22θ13 = 0.08 sin22θ13 = 0.14 sin22θ13 = 0.04 Attempt to compare Double-Chooz with T2K (3σ discovery potential)

  30. Energy scale Energy scale modified on both detectors by +1% Use a 1 parameter fit for all the rest q13(fit) Strong distortion q13(gen)

  31. Moving the Close detector by +0.5m Distance to reactor increases Dist to Far decreases Position of the near detector

  32. First day 235U day 330 q (fit) 239Pu 238U 241Pu q (gen) Burn-up effect (330 days fuel evolution)

  33. Proto-collaboration, Letter of Intentand prospects e

  34. The current proto-collaboration Chooz, November 2003 • Double-CHOOZ meetings • Chooz, November 2003 • Heidelberg, February 2004 • Tubingen, April 2004

  35. Letter of Intent

  36. Double-Chooz & IAEA • IAEA :Intenational Agency for Atomic Energy • Missions: Safety & Security, Science & Technology, Safeguard & Verification • Control that member states do no use civil installations with military goals (production of plutonium !) • Control of the nuclear fuel in the whole fuel cycle * Fuel assemblies, rods, containers *(*Anti-neutrinos could play a role!) Distant & unexpected controls of the nuclear installations * • Why IAEA is interested to antineutrino ? • IAEA wants the « state of the art »methods for the future ! • Several futuristic methods under study Kr, I, Cs gas trace in atmosphere • Cost issue … • AIEA wants a feasibility study on antineutrinos - Monitoring of the reactors with a Double-Chooz like detector ? - Monitoring a country – new reactors “à la KamLAND” • CEA/Saclay  we already ask some support for: - Double-Chooz near detector - New nuclear physics program to improve knowledge of reactor  spectrum

  37. Improving CHOOZ– Statistical error - @CHOOZ: R = 1.01  2.8%(stat)2.7%(syst) • increase luminosity L = t x P(GW) x Vcible

  38. Improve CHOOZ– Systematic error - • @CHOOZ : σsys=2.8% • Decrease the total systematic error • Detector design • 2 identical detectors  vers σrelative sys~0,6% • Background – improve S/B>100  error<1%

  39. Detector simulation&calibration

  40. Photons tracking • 2 simulation indépendantes • PCC & APC  simulation de CHOOZ (GEANT3) • Kurchatov  simulation Borexino (GEANT4)

  41. Photons tracking • 20% PXE + 80% dodécane + 0.1% Gd + 6g/l PPO + 20mg/l BisMSB • ~200 p.e./MeV with 500 PMTs – reflection coef =0% • Les PMs 8’’ are within the buffer ( glass at 25 cm inside)  Light collection ~flat (+5% maxi. in the target)

  42. Systematic errors

  43. Same batch of scintillator for both detectors Systematic error; « reactor » type Systematic errors: « detector » type M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374

  44. Fast signal: positron scintillanting buffer Non scintillating Buffer Ee+ (MeV) Ee+ (MeV) • CHOOZ : only scintillanting buffer • Detector = calorimter : positron energy isfully contained • Butaccidental rate high threshold on e+, many analysis cuts • Double-CHOOZ : 1 Scintillanting buffer (60cm) + 1 Non-scintillanting buffer (95cm) • Reduce the PMTs noise (40K,Tl) • Eseuil hardware ~500 keV  No more thrshold cut 0% systematic ! • 1.022 MeV calibration point at e+ spectrum start ( ) • BDFs measuremnt above and below the positiron spectrum

  45. Delayed signal : neutron Non scintillating buffer Scintillating buffer Gd Gd H H En (MeV) En (MeV) (H. de Kerret) • Gadolinium loaded scintillator (~0.1%) • Gd  8 MeV ’s (capture on Gd : 86.6%1.0% in CHOOZ, Eur.Phys.J. C27 (2003) 331-374) • H  2.2 MeV ’s • n capture prob. 1.0% (CHOOZ)  O% with 2 detectors (MC uncertainty) • t (e+-n)  0.4% (CHOOZ)  0% with 2 detectors (MC uncertainty) • n energy 0.4% (CHOOZ)  Scintillating buffer mandatory(as in CHOOZ) • “spill in / spill out” effect  1.0% (CHOOZ)  O(0.1%) 2 identical detectors needed!  But neutronics to be checked

  46. Analyis cuts @CHOOZ M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374 Analysis cuts @Double-CHOOZ

  47. All systematic errors in Double-Chooz

  48. R&D on systematic errors in 2004 • Dead time(Heidelberg) - important (~50%) but simple (500microsec/muon) - generate couples of test particles et measure their survival time - hardware tests in 2004 • Quantity of liquid in the target(Saclay) - build both targets in factory in the same time + test filling - geometrical measurements in factory and on site - weight liquids in the same intermdiate tank  0.1% • Distance detector-reactor core(APC-Saclay ph.nucl.+Subatech?) -10cm a 150 m 0.15% systematic error - 10cm in Chooz pub. (+- 3cm at Bugey) - core center of gravty movement of 6cm monitored at bugey

  49. Background

  50. Reduce backgrounds • CHOOZ: S/B ~ 25 • Double-CHOOZ aim: S/B>~100 • Double-CHOOZ-far (300 mwe): 12.7 m3 Signal x ~3 • Accidentals: • Buffer non scintillanting buffers • Double-Chooz: B/3  less than 0.5% and measurable • correlated events: • CHOOZ: ~1 recoil proton / day & signal =26/d • Double-CHOOZ: S* 2.3 & B/2  S/B>100 (neutronn simulation in progress) • Double-CHOOZ-near (~60 mwe): Signal x 50-100 SCHOOZ-loin • -Dproche ~100-200m  Signal * >30, but * 30 • - all backgrounds: • BDF CHOOZ-loin *<30  S/B > 100 •  Measure all BDFs at 50%

More Related