550 likes | 782 Vues
Volume Visualization. Acknowledgements: Torsten M öller (SFU). Parallel Coordinates. Direct Volume Rendering. Hauser et al. Fua et al. Isosurfaces. Glyphs. Scatter Plots. Line Integral Convolution. Node-link Diagrams. Cabral & Leedom. Streamlines. Lamping et al. Verma et al.
E N D
Volume Visualization Acknowledgements: Torsten Möller (SFU)
Parallel Coordinates Direct Volume Rendering Hauser et al. Fua et al. Isosurfaces Glyphs Scatter Plots Line Integral Convolution Node-link Diagrams Cabral & Leedom Streamlines Lamping et al. Verma et al. SciVis InfoVis
Overview • Data & Applications • Slicer tools • Iso-surfaces • Direct Volume Rendering • Challenges
Medical Scanning • MRI, CT, SPECT, PET, ultrasound
Medical Scanning - Applications • Diagnosis • Surgery planning • Tele-medicine • Inter-operative visualization in brain surgery, biopsies, etc.
Medical Scanning - Applications • Medical education for anatomy, surgery, etc. • Illustration of medical procedures to the patient
Biological Scanning • Scanners: Biological scanners, electronic microscopes, confocal microscopes • Apps – physiology, paleontology, microscopic analysis…
Industrial Scanning • Planning (e.g., log scanning) • Quality control • Security (e.g. airport scanners)
Scientific Computation - Domain • Mathematical analysis • ODE/PDE (ordinary and partialdifferential equations) • Finite element analysis (FE) • Supercomputer simulations
Compassis.com Tecplot.com Scientific Computation - Apps • Flow Visualization(next week)
Data Dimensionality • 3D (spatial data) or 4D (3D spatial + time) • May be multivariate (several data values at each point) Voxel
Overview • Data & Applications • Slicer tools • Iso-surfaces • Direct Volume Rendering • Challenges
Volume Slicer 3D Slicer McGuffin et al.
Overview • Data & Applications • Slicer tools • Iso-surfaces • Direct Volume Rendering • Challenges
Isosurfaces - Examples Isolines Isosurfaces Tecplot.com
Isosurface Extraction 0 1 1 3 2 • by contouring • “marching cubes” is most common method 1 3 6 6 3 3 7 9 7 3 2 7 8 6 2 1 2 3 4 3 Iso-value = 5
MC: Classify Each Voxel • Each voxel is either- outside the surface (> isovalue) - inside the surface (<= isovalue) 10 10 Iso=9 5 5 10 8 Iso=7 8 8 =inside =outside
MC: Assign Triangles • all 256 cases can be derived from 15 base cases
c a b MC: Example
MC: Find Edge Locations • For each triangle edge, find the vertex location along the edge using linear interpolation of the voxel values i+1 i x =10 =0 Isovalue = 3 Isovalue = 8
MC: Compute Normals • Calculate the normal at each cube vertex using central differencing: • Use linear interpolation to compute the polygon vertex normal
Overview • Data & Applications • Slicer tools • Iso-surfaces • Direct Volume Rendering • Challenges
Rendering Pipeline Classify
Classification • original data set has application specific values (temperature, velocity, proton density, etc.) • assign these to color/opacity values to make sense of data • achieved through transfer functions
opacity RGB Shading, Compositing… Human Tooth CT Transfer Functions RGB • Simple (usual) case: Map data value to color and opacity opacity Data Value Gordon Kindlmann
Transfer Functions • Setting transfer functions is difficult and unintuitive University of Utah
Transfer Function Challenges • Better interfaces: • Make space of TFs less confusing • Remove excess “flexibility” • Provide guidance • Automatic / semi-automatic transfer function generation • Typically highlight boundaries
Rendering Pipeline Classify Shade
Light Effects • Usually only consider reflected part Light reflected specular Light absorbed ambient diffuse transmitted Light=refl.+absorbed+trans. Light=ambient+diffuse+specular
Rendering Pipeline Classify Shade Interpolate
1D • Given: • Needed: • Needed: Interpolation • Given: 2D
Interpolation • Accuracy is important • Expensive => done very often for one image Linear Nearest neighbor
Rendering Pipeline Classify Shade Interpolate Composite
Volumetric Ray Tracing color opacity object (color, opacity)
Ray Traversal Schemes Intensity Max Average Accumulate First Depth
Ray Traversal - First • First: extracts iso-surfaces (again!)done by Tuy&Tuy ’84 Intensity First Depth
Ray Traversal - Average • Average: produces basically an X-ray picture Intensity Average Depth
Ray Traversal - MIP • Max: Maximum Intensity Projectionused for Magnetic Resonance Angiogram Intensity Max Depth
Ray Traversal - Accumulate • Accumulate: make transparent layers visible! Intensity Accumulate V. Anupam et al. Depth
1.0 Volumetric Ray Integration color opacity V. Anupam et al. object (color, opacity)
Isosurface Slicer Direct Volume Rendering
Overview • Data & Applications • Slicer tools • Iso-surfaces • Direct Volume Rendering • Challenges
Challenges - Accuracy • Need metrics -> perceptual metric Original Bias-added Edge-distorted
Challenges - Accuracy • Deal with unreliable data (e.g., Ultrasound data is noisy)
Challenges - Speed/Size • Efficient algorithms • Hardware developments (VolumePro) • Utilize current hardware (nvidia, ATI) • Compression schemes • Tera-byte data sets
Challenges - HCI • Need better interfaces for specifying parameters • Which method is best?
Challenges - HCI • Virtual and Augmented reality • Explore novel I/O devices Schkolne et al. Konieczny et al., Vis 2005