1 / 21

La Llave al mundo Inhalabrico

La Llave al mundo Inhalabrico. 802.11a.

marisa
Télécharger la présentation

La Llave al mundo Inhalabrico

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. La Llave al mundoInhalabrico

  2. 802.11a • La revisión 802.11a fue ratificada en 1999. El estándar 802.11a utiliza el mismo juego de protocolos de base que el estándar original, opera en la banda de 5 Ghz y utiliza 52 subportadorasorthogonalfrequency-divisionmultiplexing (OFDM) con una velocidad máxima de 54 Mbit/s, lo que lo hace un estándar práctico para redes inalámbricas con velocidades reales de aproximadamente 20 Mbit/s. La velocidad de datos se reduce a 48, 36, 24, 18, 12, 9 o 6 Mbit/s en caso necesario. 802.11a tiene 12 canales sin solapa, 8 para red inalámbrica y 4 para conexiones punto a punto. No puede interoperar con equipos del estándar 802.11b, excepto si se dispone de equipos que implementen ambos estándares.

  3. 802.11a • Dado que la banda de 2,4 Ghz tiene gran uso (pues es la misma banda usada por los teléfonos inalámbricos y los hornos de microondas, entre otros aparatos), el utilizar la banda de 5 GHz representa una ventaja del estándar 802.11a, dado que se presentan menos interferencias. Sin embargo, la utilización de esta banda también tiene sus desventajas, dado que restringe el uso de los equipos 802.11a a únicamente puntos en línea de vista, con lo que se hace necesario la instalación de un mayor número de puntos de acceso; Esto significa también que los equipos que trabajan con este estándar no pueden penetrar tan lejos como los del estándar 802.11b dado que sus ondas son más fácilmente absorbidas.

  4. 802.11b • La revisión 802.11b del estándar original fue ratificada en 1999. 802.11b tiene una velocidad máxima de transmisión de 11 Mbit/s y utiliza el mismo método de acceso definido en el estándar original CSMA/CA. El estándar 802.11b funciona en la banda de 2,4 GHz. Debido al espacio ocupado por la codificación del protocolo CSMA/CA, en la práctica, la velocidad máxima de transmisión con este estándar es de aproximadamente 5,9 Mbit/s sobre TCP y 7,1 Mbit/s sobre UDP.

  5. 802.11g • En junio de 2003, se ratificó un tercer estándar de modulación: 802.11g. Que es la evolución del estándar 802.11b, Este utiliza la banda de 2,4 Ghz (al igual que el estándar 802.11b) pero opera a una velocidad teórica máxima de 54 Mbit/s, que en promedio es de 22,0 Mbit/s de velocidad real de transferencia, similar a la del estándar 802.11a. Es compatible con el estándar b y utiliza las mismas frecuencias. Buena parte del proceso de diseño del estándar lo tomó el hacer compatibles los dos estándares. Sin embargo, en redes bajo el estándar g la presencia de nodos bajo el estándar b reduce significativamente la velocidad de transmisión.

  6. 802.11g • Los equipos que trabajan bajo el estándar 802.11g llegaron al mercado muy rápidamente, incluso antes de su ratificación que fue dada aprox. el 20 de junio del 2003. Esto se debió en parte a que para construir equipos bajo este nuevo estándar se podían adaptar los ya diseñados para el estándar b. • Actualmente se venden equipos con esta especificación, con potencias de hasta medio vatio, que permite hacer comunicaciones de hasta 50 km con antenas parabólicas o equipos de radio apropiados

  7. 802.11n • IEEE 802.11n está construido basándose en estándares previos de la familia 802.11, agregando Multiple-Input Multiple-Output (MIMO) y unión de interfaces de red (ChannelBonding), además de agregar tramas a la capa MAC. • MIMO es una tecnología que usa múltiples antenas transmisoras y receptoras para mejorar el desempeño del sistema, permitiendo manejar más información (cuidando la coherencia) que al utilizar una sola antena. Dos beneficios importantes que provee a 802.11n, son la diversidad de antenas y el multiplexado espacial.

  8. 802.11n • La tecnología MIMO depende de señales multiruta. Las señales multiruta son señales reflejadas que llegan al receptor un tiempo después de que la señal de línea de visión (line of sight, LOS) ha sido recibida. En una red no basada en MIMO, como son las redes 802.11a/b/g, las señales multiruta son percibidas como interferencia que degradan la habilidad del receptor de recobrar el mensaje en la señal. MIMO utiliza la diversidad de las señales multirutas para incrementar la habilidad de un receptor de recobrar los mensajes de la señal. • Otra habilidad que provee MIMO es el Multiplexado de División Espacial (SDM). SDM multiplexa espacialmente múltiples flujos de datos independientes, transferidos simultáneamente con un canal espectral de ancho de banda. SDM puede incrementar significativamente el desempeño de la transmisión conforme el número de flujos espaciales es incrementado. Cada flujo espacial requiere una antena discreta tanto en el transmisor como el receptor. Además, la tecnología MIMO requiere una cadena de radio frecuencia separada y un convertidor de analógico a digital para cada antena MIMO lo cual incrementa el costo de implantación comparado con sistemas sin MIMO.

  9. 802.11n • ChannelBonding, también conocido como 40 MHz o unión de interfaces de red, es la segunda tecnología incorporada al estándar 802.11n la cual puede utilizar dos canales separados, que no se solapen, para transmitir datos simultáneamente. La unión de interfaces de red incrementa la cantidad de datos que pueden ser transmitidos. Se utilizan dos bandas adyacentes de 20 MHz cada una, por eso el nombre de 40 MHz. Esto permite doblar la velocidad de la capa física disponible en un solo canal de 20 MHz. (Aunque el desempeño del lado del usuario no será doblado.) • Utilizar conjuntamente una arquitectura MIMO con canales de mayor ancho de banda, ofrece la oportunidad de crear sistemas muy poderosos y rentables para incrementar la velocidad de transmisión de la capa física.

  10. Canales y frecuencias • Los identificadores de canales, frecuenciascentrales, y dominiosreguladoresparacada canal usadopor IEEE 802.11b e IEEE 802.11g:

  11. Canales y frecuencias • Los estándares 802.11b y 802.11g utilizan la banda de 2,4 – 2,5 Ghz. En esta banda, se definieron 11 canales utilizables por equipos WIFI, que pueden configurarse de acuerdo a necesidades particulares. Sin embargo, los 11 canales no son completamente independientes (canales contiguos se superponen y se producen interferencias). El ancho de banda de la señal (22MHz) es superior a la separación entre canales consecutivos (5MHz), por eso se hace necesaria una separación de al menos 5 canales con el fin de evitar interferencias entre celdas adyacentes. Tradicionalmente se utilizan los canales 1, 6 y 11, aunque se ha documentado que el uso de los canales 1, 5, 9 y 13 (en dominios europeos) no es perjudicial para el rendimiento de la red.5 6 • Esta asignación de canales usualmente se hace sólo en el Punto de acceso, pues los “clientes” automáticamente detectan el canal, salvo en los casos en que se forma una red “Ad-Hoc” o punto a punto cuando no existe Punto de acceso.

  12. ServiciosOfrecidos 802.11 • Control de acceso y seguridad: Autenticación: SSID ó técnica de cifrado. • SSID (Service Set IDentifier) es un nombre incluido en todos los paquetes de una red inalámbrica (Wi-Fi) para identificarlos como parte de esa red. El código consiste en un máximo de 32 caracteres que la mayoría de las veces son alfanuméricos (aunque el estándar no lo especifica, así que puede consistir en cualquier carácter). Todos los dispositivos inalámbricos que intentan comunicarse entre sí deben compartir el mismo SSID. • Uno de los métodos más básicos de proteger una red inalámbrica es desactivar la difusión (broadcast) del SSID, ya que para el usuario medio no aparecerá como una red en uso. Sin embargo, no debería ser el único método de defensa para proteger una red inalámbrica. Se deben utilizar también otros sistemas de cifrado y autentificación.

  13. ServiciosOfrecidos 802.11 • Privacidad -> Cifrado de datos: • WEP WiredEquivalentPrivacy o "Privacidad Equivalente a Cableado", es el sistema de cifrado incluido en el estándar IEEE 802.11 como protocolo para redes Wireless que permite cifrar la información que se transmite. Proporciona un cifrado a nivel 2, basado en el algoritmo de cifrado RC4 que utiliza claves de 64 bits (40 bits más 24 bits del vector de iniciación IV) o de 128 bits (104 bits más 24 bits del IV). Los mensajes de difusión de las redes inalámbricas se transmiten por ondas de radio, lo que los hace más susceptibles, frente a las redes cableadas, de ser captados con relativa facilidad. Presentado en 1999, el sistema WEP fue pensado para proporcionar una confidencialidad comparable a la de una red tradicional cableada. • Comenzando en 2001, varias debilidades serias fueron identificadas por analistas criptográficos. Como consecuencia, hoy en día una protección WEP puede ser violada con software fácilmente accesible en pocos minutos. Unos meses más tarde el IEEE creó la nueva corrección de seguridad 802.11i para neutralizar los problemas.

  14. ServiciosOfrecidos 802.11 Privacidad -> Cifrado de datos: • WEP2 usa cifrado y vector de iniciación de 128-bits. Esta mejora de WEP fue presentada tras los primeros modelos 802.11i. Éste se podía desarrollar sobre algunos (no todos) tipos de hardware que no eran capaces de manejar WPA o WPA2. Se esperaba que eliminase la deficiencia del duplicado de IV así como ataques a las claves por fuerza bruta. Sin embargo, como todavía se basaba en el algoritmo de cifrado RC4, aún mantenía las mismas vulnerabilidades que WEP. • Después de que quedara claro que el algoritmo WEP era deficiente y requeriría aún más correcciones, tanto WEP2 como el algoritmo original fueron desechados. Las dos longitudes de clave ampliadas formaron lo que más adelante se conocería como TKIP del WPA.

  15. ServiciosOfrecidos 802.11 Privacidad -> Cifrado de datos: • WEP Plus es una mejora WEP desarrollada por AgereSystems (anteriormente una filial de Lucent Technologies) que mejora la seguridad WEP evitando "IV’s débiles". Este protocolo es completamente eficaz únicamente cuando es usado a ambos extremos de la conexión inalámbrica. Como esto no es fácil de conseguir, representa una seria limitación. Es posible que tarde o temprano se logren ataques con éxito al sistema WEP+. Además no previene necesariamente los ataques de Replay.

  16. ServiciosOfrecidos 802.11 Privacidad -> Cifrado de datos: • WEP dinámico: en este caso las claves WEP cambian de forma dinámica. Cada cliente utiliza dos claves: una de asignación y una predeterminada. La clave de asignación se comparte entre el cliente y el punto de acceso, y protege las tramas unidifusión. La clave predeterminada es compartida por todos los clientes para proteger las tramas de difusión y multidifusión. WEP de clave dinámica ofrece ventajas significativas sobre las soluciones de WEP con clave estática. • La más importante se refiere a que reduce el ámbito de cada clave. Las claves se utilizan con menos frecuencia y se reduce el compromiso de la clave utilizándola para proteger menos tráfico. Otra ventaja es que a intervalos periódicos las claves se actualizan en el punto de acceso

  17. Antenas Unidireccional • Una antena direccional (también llamada unidireccional o directiva) es una antena capaz de concentrar la mayor parte de la energía radiada de manera localizada, aumentando así la potencia emitida hacia el receptor o desde la fuente deseados y evitando interferencias introducidas por fuentes no deseadas.

  18. Antenas Omnidireccional • Definimos una antena direccional como aquella que es capaz de radiar energía prácticamente en todas direcciones.

  19. Site Survey or Wireless Survey • Wirelesssitesurvey es el proceso de planear y diseñar la implementación de una red inalámbrica wi-fi 802.11 para poder proveer la solución más adecuada en cuanto a cobertura, data rates, densidad de usuarios, capacidad de la red, roaming y Calidad de Servicio. • Para realizar estos análisis usted debe proporcione suficiente información para tal propósito, tales como planos, fotografías, ubicación geográfica, cobertura esperada en cada zona, densidad de usuarios en cada zona, entre otros detalles que se le solicitarán al momento de realizar el estudio.

  20. Site Survey or Wireless Survey

  21. Gracias . . .

More Related