180 likes | 314 Vues
This document explores the interaction energy between residues and their sequential environments, emphasizing the prediction of protein disorder and binding sites. It utilizes the IUPred algorithm, which assesses the structural probability of residues based on their surroundings. The manuscript also covers the interaction energies of specific amino acids and offers an example using the p53 protein, identifying key binding sites. Additionally, it discusses methods for estimating transmembrane protein structures, emphasizing hydrophobicity and amino acid substitution matrices.
E N D
Estimate the interaction energy between the residue and its sequential environment A – 10% C – 0% D – 12 % E – 10 % F – 2 % etc… Decide the probability of the residue being disordered based on this Amino acid composition of environ-ment: Predicting protein disorder - IUPred • Basic idea: If a residue is surrounded by other residues such that they cannot form enough favorable contacts, it will not adopt a well defined structureit will be disordered • The algorithm: …..QSDPSVEPPLSQETFSDL WKLLPENNVLSPLPSQAMDDLMLSP D DIEQWFTEDPGPDEAPRMPEAAPRVA PAPAAPTPAAPAPA…..
Amino acid composition of the residue D: Interaction energies: A – 10% C – 0% D – 12 % E – 10 % F – 2 % stb… 97%, that it is disordered Predicting protein disorder - IUPred • Back to p53: E = 1.16 *0.10 + (-0.82) *0 +… The predicted interaction energy: =1.138
Predicting binding sites - ANCHOR • 3 – Interaction with globular proteins We consider the average amino acid composition of a globular dataset instead of the own environment: A – 10% C – 0% D – 12 % E – 10 % F – 2 % stb… A – 7.67% C – 2.43% D – 4.92 % E – 5.43 % F – 3.19 % stb… Composition calculated on a large globular dataset The thus gained energy: where
Predicting binding sites - ANCHOR • Example: N terminal p53 Contains three binding sites: • MDM2: 17-27 • RPA70N: 33-56 • RNAPII: 45-58 P = p1*Saverage+ p2*Eint+ p3*Egain
Anyagcsere folyamatok Transzporterek Ion csatornák Hordozók Információ csere Receptorok Transzmembrán fehérjék
Ismert szerkezetű transzmembrán fehérjék szerkezetét vizsgáló szerverek
Az emberi rodopszin és a bakteriorodopszin aminosav- sorrendjeinek összehasonlítása
O o H i I A HMMTOP algoritmus
Intracellular domain Q Pfam Prosite Prints Smart Intracellular domain Q Intracellular domain Q Intracellular domain Q C Protein A N C N Protein B S c a n n i n g Protein C TM selection of UniProtKB N C ? ? C TOPDOM Unknown Protein N