190 likes | 355 Vues
Multilevel analysis with EQS. Castello2004 Data is datamlevel.xls, datamlevel.sav, datamlevel.ess. /TITLE Single factor model for multilevel data / SPECIFICATIONS DATA='f:seminarios semcastello2004datamlevel.ess'; VARIABLES=4; CASES=3609; GROUPS=2;
E N D
Castello2004 • Data is datamlevel.xls, datamlevel.sav, datamlevel.ess
/TITLE Single factor model for multilevel data /SPECIFICATIONS DATA='f:\seminarios sem\castello2004\datamlevel.ess'; VARIABLES=4; CASES=3609; GROUPS=2; METHOD=ML; ANALYSIS=COVARIANCE; MATRIX=RAW; MULTILEVEL=ML; CLUSTER=V1; /LABELS V1=SCHOOL; V2=EXAM1; V3=EXAM2; V4=EXAM3; /EQUATIONS V2 = *F1 + E2; V3 = *F1 + E3; V4 = *F1 + E4; /VARIANCES E2 = *; E3 = *; E4 = *; F1 =1; /COVARIANCES /END /TITLE Model built by EQS 6 for Windows in Group 2 /LABELS V1=SCHOOL; V2=EXAM1; V3=EXAM2; V4=EXAM3; /EQUATIONS V2 = *F1 + E2; V3 = *F1 + E3; V4 = *F1 + E4; /VARIANCES E2 = *; E3 = *; E4 = *; F1 = 1; /COVARIANCES /PRINT FIT=ALL; TABLE=EQUATION; /END
SIZE (S) CLUSTER ID WITH SIZE S 13 62 78 90 18 5 19 88 91 21 3 22 81 25 89 26 10 66 27 83 31 61 32 68 34 57 35 67 36 9 38 8 39 12 54 40 84 41 6 15 56 71 87 42 43 43 13 47 58 49 85 52 48 54 64 55 26 59 42 76 62 46 92 67 22 70 21 81 19 83 31 32 84 29 38 85 17 86 33 89 96 91 47 92 35 77 93 44 94 30 103 45 121 60 129 16 135 18 139 24 152 7 201 79 AVERAGE CLUSTER SIZE IS 61.169 ESTIMATED WITHIN-CLUSTERS COVARIANCE MATRIX FOR SATURATED MODEL EXAM1 EXAM2 EXAM3 V 2 V 3 V 4 EXAM1 V 2 .501 EXAM2 V 3 .523 .698 EXAM3 V 4 .504 .640 1.073 ESTIMATED BETWEEN-CLUSTERS COVARIANCE MATRIX FOR SATURATED MODEL EXAM1 EXAM2 EXAM3 V 2 V 3 V 4 EXAM1 V 2 .033 EXAM2 V 3 .030 .045 EXAM3 V 4 .063 .055 .247
MULTI-LEVEL ANALYSIS: WITHIN-LEVEL MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. EXAM1 =V2 = .642*F1 + 1.000 E2 .009 68.621@ EXAM2 =V3 = .815*F1 + 1.000 E3 .011 77.356@ EXAM3 =V4 = .785*F1 + 1.000 E4 .015 52.834@
E D --- --- E2 -EXAM1 .089*I I .004 I I 23.560@I I I I E3 -EXAM2 .034*I I .005 I I 6.690@I I I I E4 -EXAM3 .457*I I .012 I I 38.944@I I I I STANDARDIZED SOLUTION: R-SQUARED EXAM1 =V2 = .907*F1 + .421 E2 .823 EXAM2 =V3 = .975*F1 + .221 E3 .951 EXAM3 =V4 = .758*F1 + .652 E4 .574
MULTI-LEVEL ANALYSIS: BETWEEN-LEVEL MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. EXAM1 =V2 = .185*F1 +1.000 E2 .020 9.204@ EXAM2 =V3 = .170*F1 +1.000 E3 .027 6.193@ EXAM3 =V4 = .348*F1 +1.000 E4 .057 6.079@
E D --- --- E2 -EXAM1 .000*I I .152 I I .000 I I I I E3 -EXAM2 .017*I I .003 I I 5.127@I I I I E4 -EXAM3 .128*I I .024 I I 5.387@I I I I STANDARDIZED SOLUTION: R-SQUARED EXAM1 =V2 = 1.000*F1 + .000 E2 1.000 EXAM2 =V3 = .792*F1 + .611 E3 .627 EXAM3 =V4 = .698*F1 + .717 E4 .487
/TITLE Single factor model for multilevel data /SPECIFICATIONS DATA='f:\seminarios sem\castello2004\datamlevel.ess'; VARIABLES=4; CASES=3609; GROUPS=2; METHOD=ML; ANALYSIS=COVARIANCE; MATRIX=RAW; MULTILEVEL=ML; CLUSTER=V1; /LABELS V1=SCHOOL; V2=EXAM1; V3=EXAM2; V4=EXAM3; /EQUATIONS V2 = *F1 + E2; V3 = *F1 + E3; V4 = *F1 + E4; /VARIANCES E2 = *; E3 = *; E4 = *; F1 =1; /COVARIANCES /END /TITLE Model built by EQS 6 for Windows in Group 2 /LABELS V1=SCHOOL; V2=EXAM1; V3=EXAM2; V4=EXAM3; /EQUATIONS V2 = *F1 + E2; V3 = *F1 + E3; V4 = *F1 + E4; /VARIANCES E2 = *; E3 = *; E4 = *; F1 = 1; /COVARIANCES /CONSTRAINTS (2,V2,F1) = (2,V3,F1); /PRINT FIT=ALL; TABLE=EQUATION; /END
MULTI-LEVEL ANALYSIS: WITHIN-LEVEL MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) EXAM1 =V2 = .642*F1 + 1.000 E2 .009 68.612@ EXAM2 =V3 = .815*F1 + 1.000 E3 .011 77.357@ EXAM3 =V4 = .785*F1 + 1.000 E4 .015 52.832@
E D --- --- E2 -EXAM1 .089*I I .004 I I 23.550@I I I I E3 -EXAM2 .034*I I .005 I I 6.696@I I I I E4 -EXAM3 .457*I I .012 I I 38.944@I I I I STANDARDIZED SOLUTION: R-SQUARED EXAM1 =V2 = .907*F1 + .421 E2 .823 EXAM2 =V3 = .975*F1 + .221 E3 .951 EXAM3 =V4 = .758*F1 + .653 E4 .574
MULTI-LEVEL ANALYSIS: BETWEEN-LEVEL MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. EXAM1 =V2 = .184*F1 +1.000 E2 .021 8.550@ EXAM2 =V3 = .184*F1 +1.000 E3 .021 8.550@ EXAM3 =V4 = .354*F1 +1.000 E4 .059 6.026@
E D --- --- E2 -EXAM1 .001*I I .003 I I .210 I I I I E3 -EXAM2 .017*I I .004 I I 4.099@I I I I E4 -EXAM3 .127*I I .025 I I 5.024@I I I I STANDARDIZED SOLUTION: R-SQUARED EXAM1 =V2 = .992*F1 + .126 E2 .984 EXAM2 =V3 = .816*F1 + .577 E3 .667 EXAM3 =V4 = .705*F1 + .710 E4 .496
GOODNESS OF FIT SUMMARY FOR METHOD = ML INDEPENDENCE MODEL CHI-SQUARE = 8640.064 ON 6 DEGREES OF FREEDOM INDEPENDENCE AIC = 8628.06354 INDEPENDENCE CAIC = 8584.91642 MODEL AIC = -1.40119 MODEL CAIC = -8.59238 BENTLER-LIANG LIKELIHOOD RATIO STATISTIC = .599 BASED ON 1 D.F. PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .43903