1 / 30

Energiewende wohin ?

Energiewende wohin ?. Robert Schlögl MPI CEC: www.cec.mpg.de Fritz-Haber- Institut Berlin www.fhi-berlin.mpg.de. Systemic views on energy supply Why Energiewende? ( presently out of focus ). The target issue.

Télécharger la présentation

Energiewende wohin ?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Energiewendewohin ? Robert Schlögl MPI CEC: www.cec.mpg.de Fritz-Haber-Institut Berlin www.fhi-berlin.mpg.de

  2. Systemicviews on energysupplyWhy Energiewende? (presently out of focus)

  3. Thetargetissue The target functions contain a number of variables each; there is no agreement on these : How can we find a direction? N = f(n1,n2,n3...) P = f(p1,p2,p3...) V = f(v1,v2,v3...) N+P+V = 9 The target is affected by multiple influences many of which are out of our control: not fixed but a moving target requires adaptive rather than stiff regulations.

  4. How fast transformsthe German energysystem? • The current debate concentrates on nuclear/renewable electrical energy. • These account for about 10% of the energy content (emissions) of the total system. • The main targets of the energy system transformation are hardly touched. • Extreme focus on pricing arguments. Source: AGEB 2013

  5. Energy efficiency • A critical issue: why do we need energy for what? • Relevant for industry (much already done) but also for trade and sales and of course for all individuals (consume in total about 50% of the energy bill). • Many issues of tradition and behaviour with strong political marks („Km-Pauschale”). • In industry an important issue; also chemistry contributes with materials and processes: • LED lighting • Lubricants and tyres • Catalysis and high temperature materials • Without disruptive changes not enough potential by evolutionary trends.

  6. Energy efficiencyevolution Between 1990 and 2012 Source: EVONIK magazin, 2013 Energiekonzept 2010

  7. Systemic: unexpectedresponses

  8. A systemicsolutionStorage (transport) of large amounts of energy I have a plan....

  9. Theenergychallengeissystemic

  10. Energy storageFor volatile renewables indispensable at large usage fractions Multiple methods. Different in temporal and capacity properties. Only thermo-mechanical and partly batteries operational at technological levels.

  11. All beginswith a chemicalchallenge:resolvethevolatility • Integration of primary solar electricity into demand structure is the most efficient energy system. • Splitting of water to obtain hydrogen as primary solar fuel is the challenge. • Electrolysis at partial variable load is the key technology. • Oxygen evolution is the limiting reaction. • Electrode degradation and use of excessive amounts of noble metal limit practical application.

  12. MPI CECtacklingthebasicconcepts of energyintegration Chemical energy conversion Catalysis as chemo- electro- and photocatalysis is the enabling basic science of energy storage.

  13. Start at thebeginning:Properties of solar energy

  14. Therole of chemistry • Chemical energy conversion is the critical interface between electricity and „fuels“. The relevant science is “catalysis”. • Without the splitting of water through electricity the sustainable energy system is not possible. • In the hierarchy of storage systems chemical systems are slow but of unlimited size: seasonal and strategic storage, bulk energy transport. • Shorter storage with hydrogen ? • CEC needs to be ready at about 50% renewable primary electricity: not now but absolutely certain! Start now with development. • Methane is an excellent platform molecule for multiple applications interfacing fossil and sustainable energy with the same technology and storage infrastructure. • Despite many claims its generation on large scales is not without challenges .

  15. Electrolysis without noble metals:learning from nature electrical current lead reaction centre Nano- Mn2O3 made electrically contacted by functionalized CNT

  16. The potential of Biomass: energycarrier • Biomass is ubiquitous. • It can be used without interference to food. • It is low in specific energy content. • It requires complex refining: • Direct conversion (fermentation) • pyrolysis • gasification Free energyproduction from solar conversion in kWh/m2/a: Source: recalculatedfromdataLeopoldinaBiomassstudy 2012

  17. Power to gas: part of therenewableenergysystem

  18. CO2 hydrogenation: Thekey to solar fuels • The most simple reaction seems to be methanation. Potent cataylsts show, however grave stability problems when operated at high load. • The hydrogenation of COx to alcohols is a more robust reaction to obtain solar fuels and platform chemicals. • Nanostructuring of metal particles is the critical tool for controlling selectivity. • Stability is governed by metal-support interactions.

  19. Die Energiewende • Die „Wende“ ist ein systemischer langsamer Prozess einer Wandlung des Energiesystems. Bewusste Veränderung benötigt Durchblick und Konzeptionsstärke. • Die Zielrichtung ist vorgegeben, das genaue Ziel hängt von Rahmenbedingungen ab. Dazu zählen belastbare Technologien. • „Die Wissenschaft“ widmet sich intensiv der Energieforschung. • Stellt Lösungen für kurz- und langfristige Herausforderungen bereit. • Koordiniert sich und sorgt für Technologietransfer. • Das Ziel benötigt aber auch stabile Rahmenbedingungen für Forschung und die Strategie der Wandlung. • Information über Handlungsoptionen, Transparenz zu Lasten und Kosten und Akzeptanz durch Bevölkerung als Vorraussetzungen für verlässliche politische Konzepte und deren Umsetzung. Systemisch denken, gemeinsam konzipieren und entschlossen umsetzen.

  20. The Price:A German discussionwith global implications

  21. Dem Anwenden muss das Erkennenvorausgehen Max Planck Thank You

  22. German electricity • Total output and import/export changed over time and after „Wende“. • Renewables enormously increased their shares but not because of „Wende“ (EEG). • Nuclear decreased substantially partly because of “Wende” • Recently lignite and coal grow on expense of gas: negative feedback due to pricing. Source: AGEB 2013

  23. ESYS: Thecontribution of „Science“

  24. Abgesang: mehr Klartext • Ingenieure • Können die Energiewende technisch bewältigen. Sie brauchen klare und verlässliche Ansagen, keine Verschlimmbesserungen. Die äußeren Rahmenbedingungen ändern sich schneller als der Umbau des Systems: Flexibilität von Lösungen aber keine „Moden“ in den Bedingungen! • Impulse • Müssen als Resultat einer aufgeklärten gesellschaftlichen Diskussion von der Politik kommen: Die Energiewende führt zuerst zu Nachhaltigkeit, die auf längere Sicht auch preiswert ist. Sie ist nicht „billig“. Wir können sie uns dann leisten, wenn wir geschickt und unideologsich vorgehen. • Innovationen • Werden dringend benötigt. Der Staat ist für Unterstützung der Entwicklung nicht aber für deren Subvention gefragt. Nicht Konkurrenz um „die“ Innovation. Wir brauchen Optionen und sich ergänzende neue Systeme. Forschungsausgaben Energie 2011 incl. Nuklear Quelle: BmWi, 2013

  25. Noch mehr Klartext • Stop mit dem Mikromanagment in der öffentlichen Debatte. • Konsens herstellen: Warum betreiben wir eine Energiewende? • Entscheiden der Rollenverteilung: • Industrie, Gesellschaft, Kunden, Staat: Wer macht grundsätzlich was? • Akzeptieren: • Die Energiewende ist dynamisch. • Es kann daher nicht den fixen Plan geben: „Zielkorridor“ • Wir benutzen immer noch 90% unsere Energie aus fossilen und nuklearen Quellen: die EE sind nicht das „Übel“. • Uns fehlen noch wesentliche wissenschaftliche und technologische Grundlagen zur „nachhaltigen“ Energieversorgung: Forschung und DEMO Projekte zur Klärung von Wegen und Kosten der Energiewende. • Der Umbau des Energiesystems ist ein Generationenwerk: Überhastung ist extra teuer, Verschleppung noch teurer in der Zukunft!

  26. To do: industry:PV has a brightfuture!! • Accept responsibility for the energy system: • Stop building on subsidies. • Face global competition through technology. • Deliver energy not solar cells: • For utilities as partner • For small units as sole energy technology provider. • Support smart grid. • Diversify into or partner with energy storage system providers.

  27. To do: politics • Think longer-term!! • Think in energy systems. • Stop direct intervention by subsidies. • Create stable boundaries for energy system evolution: guide phasing out of fossil. • Act for the region as well as internationally (EU!). • Support subsidiary electricity systems: „decentralized“ is no contradiction to “centralized”. • Give stable R+D support for the PV industry. Total contribution to electricity Peak contribution to electricity OFA Consulting GmbH Multiple technology-open innovations are needed to close the integration gap for renewables

  28. Electricityprizes • Electricity prices are high in Germany in international and EU relations. • The prize evolution is different for private households and high tension consumers. • A substantial contribution for the small users comes from the EEG finance (about 5 ct/kWh). • Meet the tendency towards individual off-grid solutions. Source AGEB 2013, BMWI 2012

More Related