1 / 33

北大新材料论坛(深圳, 2012 )

北大新材料论坛(深圳, 2012 ). 新能源材料性质的全量子模拟. 李新征 1 , 陈基 1 , Chris Pickard 2 , Richard Needs 3 , Angelos Michaelides 2. 1 School of Physics, Peking University, China 2 University College London, U. K. 3 University of Cambridge, U. K. 理解材料性质时的关键概念. Born-Oppenheimer (BO) 近似 实际系统在 BO- 势能面上的进动.

maya-lamb
Télécharger la présentation

北大新材料论坛(深圳, 2012 )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 北大新材料论坛(深圳,2012) 新能源材料性质的全量子模拟 李新征1, 陈基1, Chris Pickard2, Richard Needs3, AngelosMichaelides2 1 School of Physics, Peking University, China 2 University College London, U. K. 3 University of Cambridge, U. K.

  2. 理解材料性质时的关键概念 • Born-Oppenheimer (BO) 近似 • 实际系统在BO-势能面上的进动 最为通行的方法:ab-initio MD 核量子效应 材料性质的全量子模拟,ab-initio path-integral molecular dynamics (PIMD)

  3. Outline • 方法的简介 • 一个实际的应用例子 • 核量子效应对金属与水界面结构的影响 • 这个方法解决的另两个在凝聚态物理中的 • 基本问题,以及在新能源材料中可能的应用

  4. 背后的物理: 路径积分 • Quantum mechanics: probability, propagator 第一部分: 方法 Schrodinger: b • Path-integral: a

  5. 第一部分: 方法 • 热力学计算中的价值: 密度矩阵 • Path-integral enters: Density matrix of a classical polymer of N beads (images) Density matrix of a quantum system

  6. 第一部分: 方法 • Path-integral enters: Density function of a polymer of N beads (images) Density function of a quantum system

  7. Bulk ice under high pressure • Water-metal interface is an important issue at the core of several fields • Corrosion • Electrochemistry • Catalysis 第二部分: 金属与水的界面 • Excess proton in liquid water - + - < 2.5 Ǻ [2] Tuckerman, Marx, Klein, and Parrinello, Science, 275, 817 (1997) [3] Benoit, Marx, Parrinello, Nature, 392, 258(1998) [1]Michaelides, andHu, JACS, 123, 4235 (2001)

  8. 第二部分: 金属与水的界面

  9. 第二部分: 金属与水的界面 • Structural properties of the overlayer at 160 K

  10. Correlate O-H and O-O 第二部分: 金属与水的界面

  11. Focus on the proton transfer 第二部分: 金属与水的界面 • Adiabatic proton transfer: general importance in water-metal interfaces • X.Z Li etal. Phys. Rev. Lett. 104, 066102 (2010)

  12. 3D Quantum Control of Hydrogen Bonds Mass Temperature Ideal model systems to systematically control tunneling (electrochemistry, biology, protonics) Lattice

  13. 第三部分:1)核量子效应对氢键强弱的影响 • X.Z Li etal. Proc. Natl. Acad. Sci. USA 108, 6369 (2011)

  14. 第三部分:2)氢在高压的低温液相 • Ji Chen, etal. submitted.

  15. 问题三:3)在新能源材料中的应用? 表面态?

  16. 谢谢! …… 各位大家! • 夏建白院士 • Prof. M. Scheffler • Prof. A. Michaelides • Prof. C. Pickard • Prof. R. Needs • 陈基同学

  17. Structural properties of the overlayer at 160 K 问题一: 金属与水的界面

  18. Impact of quantum nuclear effects on H-bond strength? Liquids: water structure is weakened, and liquid HF is strengthened Clusters: (HF)n when n > 4, strengthened, otherwise, weakened; (H2O)n always weakened In 1950s, Ubbelohde effect (replace H with D) in H-bonded crystals. Biggest question: is there a unified picture? 问题二: 核量子效应对氢键强弱的影响

  19. 问题二: 核量子效应对氢键强弱的影响

  20. Why? 问题二: 核量子效应对氢键强弱的影响 • (HF)2 • (HF)4 • (HF)5

  21. Quantitative 问题二: 核量子效应对氢键强弱的影响 • detail: X.Z Li etal. Proc. Natl. Acad. Sci. USA 108, 6369 (2011)

  22. Rule of Thumb 问题二: 核量子效应对氢键强弱的影响 • Flexible monomer with anharmonic potential must be used if one want to use force-field method in PIMD simulations

  23. Molecular solid 问题三: 氢的相图 Alkali metal: atomic solid Wigner and Huntington (1935): Under high pressure, will H2 become bcc solid?

  24. PNAS 100, 3051 (2003) Atomic liquid Molecular liquid 问题三: 氢的相图 1000 K PRL 100, 155701 (2008) Nature 431, 669 (2004) Temperature 500 K Molecular solid Phase I (hcp) Phase III transparent opaque Phase II 100 GPa 200 GPa 300 GPa Pressure 1) Phase I: free rotating molecular hcp phase 4) I/II isotope dependent, II/III not. 2) Phase II, III: molecular feature kept 5) Turns opaque at 300 GPa, completely dark at 320 GPa. 3) Phase boundary: spectrum changes

  25. Why do people know so little? • Experimentally, hard to probe, hydrogen has a very small scattering cross section for electrons and X-ray 问题三: 氢的相图 • Theoretically: 1) Electronic structure accurate 2) Configuration space explored 3) Quantum nature of hydrogen addressed accurately 4) Optical property properly described Pickard and Needs, 2007

  26. Theoretically: 1) Electronic structure accurate: PBE + DF-vdW 问题三: 氢的相图 2) Configuration space explored: AIRSS 3) Quantum nature of hydrogen : ab initio PIMD addressed accurately 4) Optical property properly described: GW, hybrid functional, IR, X-ray diffraction, and Raman

  27. 问题三: 氢的相图 not hcp hcp based molecular phase

  28. 问题三: 氢的相图

  29. Static PIMD 问题三: 氢的相图 Pbcn Pbcn transparent Opaque C2/c C2/c

  30. 问题三: 氢的相图

  31. 进行中的工作 • 现有程序基础上: • Proton transport along 1D water chain • Higher pressure hydrogen phase (>5Mbar) • Soft Phonon • ThermalConductivity …. • 新的程序:FHI-aims • 实时进动: CMD, RPMD

  32. Name a few reasons: • Different melting, boiling point of H2O and D2O • D2O is toxic if you keep drinking it • Phase transition between ice VII and VIII • Phase diagram of hydrogen under pressure …….

More Related