520 likes | 1.32k Vues
Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors. Michael Kazhdan Th o mas Funkhouser Szymon Rusinkiewicz Princeton University. Motivation. Large databases of 3D models. Computer Graphics (Princeton 3D Search Engine). Mechanical CAD
E N D
Rotation Invariant Spherical Harmonic Representation of3D Shape Descriptors Michael Kazhdan Thomas Funkhouser Szymon Rusinkiewicz Princeton University
Motivation • Large databases of 3D models Computer Graphics (Princeton 3D Search Engine) Mechanical CAD (National Design Repository) Molecular Biology (Audrey Sanderson)
Retrieval Approach 3D Model ShapeDescriptor Nearest Neighbor Model Database
Problem • Many shape descriptors are functions that rotate with the shape Extended Gaussian Image [Horn ’84] Spherical Attribute Image [Ikeuchi ’95] Shape Histogram [Ankerst ’99] Spherical Extent Function [Vranic ’00] Reflective Symmetry Descriptor[Kazhdan ’02] Gaussian EDT [Funkhouser ’03]
Goal Compute similarity of shape descriptors independent of rotation ? - =
Brute Force Approach Impractical for databases - - min (rotation) - = - -
Normalization • Use PCA to place models into a canonical coordinate frame Covariance Matrix Computation Principal Axis Alignment
Normalization • Doesn’t always work • Only second order information
Shape Descriptor Our Approach • Eliminate rotation dependence in spherical and 3D descriptors EGI [Horn ’84] SAI [Ikeuchi ’95] EXT [Vranic ’00] RSD [Kazhdan ’02] EDT [Funkhouser ’03] etc. Shape Descriptor
Our Approach • Eliminate rotation dependence in spherical and 3D descriptors Shape Descriptor Rotation Invariant Representation
Outline • Introduction • Background • Harmonic Representation • Properties • Experimental Results • Conclusion and Future Work
Key Idea • Obtain rotation invariant representation by storing amplitude and eliminating phase … + + + + = [Lo 1989] [Burel 1995]
Fourier Descriptors CircularFunction
Fourier Descriptors … = + + + + CircularFunction Cosine/Sine Decomposition
Fourier Descriptors … = + + + + CircularFunction = Constant Frequency Decomposition
Fourier Descriptors … = + + + + + CircularFunction + = Constant 1st Order Frequency Decomposition
Fourier Descriptors … = + + + + + CircularFunction + + = Constant 1st Order 2nd Order Frequency Decomposition
Fourier Descriptors … = + + + + + CircularFunction … + + + + = Constant 1st Order 2nd Order 3rd Order Frequency Decomposition
Fourier Descriptors Amplitudes invariantto rotation … = + + + + + CircularFunction … + + + + = Constant 1st Order 2nd Order 3rd Order Frequency Decomposition
Harmonic Representation SphericalFunction
Harmonic Representation … = + + + + SphericalFunction Harmonic Decomposition
Harmonic Representation … = + + + + SphericalFunction Constant 1st Order 2nd Order 3rd Order … + + + + =
Harmonic Representation Store “how much” (L2-norm) of the shape resides in each frequency Norms Invariantto Rotation … + + + + =
3D Function (Voxel Grid) Restrict to concentric spheres
3D Function (Voxel Grid) • Compute harmonic representation of each sphere independently + + + + = = + + + + = + + + +
3D Function (Voxel Grid) • Combine harmonic representations Radius Frequency
Matching Harmonic Representation Harmonic Representation - 2 L2-difference of harmonic representations…
Matching - min (rotations) - 2 2 … bounds proximity of descriptors over all rotations
Outline • Introduction • Background • Harmonic Representation • Properties • Experimental Results • Conclusion and Future Work
Advantages • The harmonic representations is: • Rotation invariant • Multi-resolution • Compact • Discriminating
Compact … … …
Compact … … … …
Compact … … … …
Compact … … … …
Compact … … … …
Information Loss • Intra-frequency information loss • Cross-frequency information loss • Cross-radial information loss
Information Loss (Spherical Descriptor) • Intra-frequency information loss • Cross-frequency information loss
Information Loss (Spherical Descriptor) • Intra-frequency information loss • Cross-frequency information loss + = 22.5o 90o = +
Information Loss (3D Descriptor) • Cross-radial information loss
Outline • Introduction • Background • Harmonic Representation • Properties • Experimental Results • Conclusion and Future Work
Shape Descriptors Extended Gaussian Image Horn 1984 Shape Histogram Ankerst 1999 Spherical Extent Function Vranic 2000 Gaussian EDT Funkhouser 2003
Experimental Database • Viewpoint “household” database1,890 models, 85 classes 153 dining chairs 25 livingroom chairs 16 beds 12 dining tables 8 chests 28 bottles 39 vases 36 end tables
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Gaussian EDT Results PCA-Normalized Results Harmonic Representation Results Query
Gaussian EDT Results • Precision vs. Recall 100% Harmonics PCA Precision 50% 0% 0% 50% 100% Recall
100% 100% 100% 100% Harmonics Harmonics Harmonics Harmonics PCA PCA PCA PCA Precision Precision Precision Precision 50% 50% 50% 50% 0% 0% 0% 0% 0% 0% 0% 0% 50% 50% 50% 50% 100% 100% 100% 100% Recall Recall Recall Recall Retrieval Results SECT EGI • EGI: Extended Gaussian Image • SECT: Shape Histogram (Sectors) • EXT: Spherical Extent Function • EDT: Gaussian Euclidean Distance Transform EXT EDT
SECT 100% 100% 100% 100% Harmonics Harmonics Harmonics Harmonics PCA PCA PCA PCA Precision Precision Precision Precision 50% 50% 50% 50% 0% 0% 0% 0% 0% 0% 0% 0% 50% 50% 50% 50% 100% 100% 100% 100% Recall Recall Recall Recall EXT EDT Retrieval Results EGI • EGI: Extended Gaussian Image • SECT: Shape Histogram (Sectors) • EXT: Spherical Extent Function • EDT: Gaussian Euclidean Distance Transform
Exhaustive Gaussian EDT Results Gaussian EDT - 100% min L2 Harmonic - PCA min (rotation) Precision - 50% - 0% 0% 50% 100% Recall
Summary and Conclusion • Provide a rotation invariant representation of shape descriptors that: • Eliminates PCA dependence • Gives better matching performance • Is more compact • Is a multi-resolution representation
Future Work • Managing Information Loss • Obtain cross radial information for 3D descriptors • Obtain cross frequency information • Get finer resolution of rotation invariance within frequencies • More Generally • Consider new shape descriptors