1 / 31

Cosmology beyond the standard model Multi component dark matter model

Cosmology beyond the standard model Multi component dark matter model. A. Doroshkevich, Astro-Space Center, FIAN, Moscow, Russia M. Demianski, University of Warsaw, Warsaw, Poland. History, three K, second plane, yesterday. 1. Relativistic Astrophysics – black holes

midori
Télécharger la présentation

Cosmology beyond the standard model Multi component dark matter model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cosmology beyond the standard modelMulti component dark matter model A. Doroshkevich, Astro-Space Center, FIAN, Moscow, Russia M. Demianski, University of Warsaw, Warsaw, Poland

  2. History, three K, second plane, yesterday

  3. 1. Relativistic Astrophysics – black holes 2. Disc accretion – neutron stars 3. Supernova explosions 4. Relic radiation - recombination of the Universe 5. Nonlinear gravitational instability - Zel’dovich pancakes 6. HDM model of the Universe 7. Magnetic field in the Sun List of problems

  4. Standard ΛCDM model Analysis of the CMB fluctuations shows that the large scale power spectrum of perturbations is the CDM like one P(k) ~ kn, n ≈ 0.96 ± 0.007 forr >10Mpc, M> 1013M B – mode of polarisation, 1403.3985 We show that this dependence cannot be extended to smaller scales

  5. First DM models- HISTORY • Doroshkevich et al. 1980 - HDM • Bisnovaty-Kogan & Novikov 1980 - HDM • Bond, Efstathiou, Silk 1980 – CDM • Bond, Szalay 1983 CDM & WDM • Blumentale & Primack 1984 – CDM • Doroshkevich, Khlopov 1984 – UDM, MDM • Turner, Steigman, Krauss 1984 – UDM • Doroshkevich, Klypin, Khlopov 1988 – MDM • Mikheeva, Doroshkevich, Lukash 2007 • Doroshkevich, Lukash, Mikheeva 2012 • CHICAGO-2013

  6. CMB power spectrumHigh precision ΛCDM model

  7. Popular request – sterile neutrino 10-19eV< mdm < 1013eV Six reviews during 2013 year: Feng (2013), Boyarsky et al. (2013), Dreves (2013) Kusenko & Rosenberg (2013), Horiuchi et al. (2013), Marcovic & Viel (2013). Three standard problems are discussed: 1. Number of satellites, 2. Core – cusp problem, 3. Ly-α forest. Why they are only qualitative ?

  8. Questions and problems 1.Observed satellites: Ms~105 – 107M, zcr~7 –15 Typical mass resolution in simulationsM~108M, MW-28, A-13 2.Cusp – in simulations of clusters with M>1013 M, NFW Core – in LBG –galaxieswithM< 109 M Impact of baryonic component in clusters and galaxies. 3. Ly-α forest: xH~10-5, UV background

  9. Direct and indirect searches DAMA – Bernabei, 2008, 2010 Super CDMS – Agnese 2013 NEGATIVE Estimates: ms >13 – 20 keV for WDM Unstable neutrinos: ms < 3keV LAC ? X-rays 3.5keV – 73 clusters: (Bulbul et al. 1402.2301) Decay of DM particles or Ar recombination line

  10. Simulations Maccio 2012 – do not reproduce observations WDM is not a viable solution of the core – cusp and satellite problems Libeskind 2013 – low mass clouds are not stable and are expanding Abel (2013) – artefacts appear, filaments Wang (2013) – unstable DM and Ly-α forest Schultz et al. (1401.3769) – high z Dutton & Maccio (1402.7073) – 17 realizations

  11. Models with one type of DM particles

  12. OUR APPROACHProcess and moment of object formation • Both galaxies and clusters are diversified • steady – state objects. • Global characteristics – mass, angular momentum,.. • Periods of anisotropic compression and/or merging • After virialization the structure of DM halos is frozen. • Therefore we can restore the z of formation • Zcr – Mvir plane • Links with the spectrum of perturbations. • Impact of baryonic component

  13. For central regions of the DM halo (Klypin et al. 2011) zcr-Mvir plane pc=pc(zcrM0.1)

  14. name r sig_v +/- Mhalf +/- <rho> +/- (1 +zcr)/10 +/- kpc km/s 10^6M_o M_o/pc^3 Carina 0.14 6.60 1.20 3.40 1.40 0.320 0.12 1.2 0.53 Draco 0.22 9.10 1.20 11.00 3.00 0.230 0.06 1.1 0.32Fornax 0.34 11.70 0.90 27.00 0.50 0.160 0.03 1.0 0.04LeoI 0.13 9.20 1.40 6.50 2.10 0.660 0.21 1.2 0.44LeoII 0.12 6.60 0.70 3.10 0.90 0.400 0.12 1.2 0.39Sculptor 0.09 9.20 1.10 4.60 1.70 1.300 0.50 1.3 0.55Sextant 0.29 7.90 1.30 11.00 4.00 0.100 0.03 1.0 0.39UMi 0.15 9.50 1.20 7.80 2.20 0.550 0.150 1.2 0.37CVen I 0.56 7.60 0.40 19.00 2.00 0.025 0.003 0.8 0.10 Coma 0.08 4.60 0.80 0.90 0.35 0.490 0.180 1.3 0.56Hercules 0.33 3.70 0.90 2.60 1.40 0.017 0.009 0.9 0.53 Leo T 0.18 7.50 1.60 5.80 2.80 0.250 0.120 1.1 0.59Segue 1 0.03 4.301.20 0.31 0.19 3.010 0.800 1.7 1.06UMa I 0.32 11.90 3.50 26.10 6.00 0.200 0.120 1.0 0.29UMa II 0.14 5.70 1.40 2.60 1.40 0.230 0.120 1.2 0.68AndII 1.23 9.30 2.70 62.00 36.00 0.008 0.005 0.7 0.45Cetus 0.59 17.00 2.00 99.00 23.00 0.110 0.020 0.9 0.22Sgr^c 1.55 11.40 0.70 120.00 60.00 0.008 0.001 0.7 0.35Tucana 0.27 15.80 3.60 40.00 19.00 0.460 0.220 1.1 0.57Bootes 1 0.24 6.50 2.00 5.90 3.70 0.100 0.060 1.0 0.70Cven II 0.07 4.60 1.00 0.90 0.40 0.530 0.250 1.3 0.65Leo IV 0.12 3.30 1.70 0.73 0.73 0.110 0.110 1.1 1.26Leo V 0.04 2.40 1.90 0.14 0.14 0.450 0.450 1.4 1.57Segue 2 0.03 3.40 1.80 0.23 0.23 1.310 0.300 1.6 1.59AndIX 0.53 6.80 2.50 14.00 11.00 0.023 0.017 0.8 0.73AndXV 0.27 11.00 6.00 19.00 2.00 0.230 0.250 1.0 0.22 -----------------------------------------------------------------------------------------------mns 1.6 0.35 sig 2.3 0.33 Problems of detection and description r corresponds to L(r)=Ltot/2 Walker et. al, 2009, ApJ, 704, 1274 - 28 dSph objects

  15. <1+zcr> = 15/M60.1(1 ± 0.12)=3/M130.1(1 ± 0.12) <B-1(zcr )> = 11/M60.1(1 ± 0.12) = 2.2/M130.1(1 ± 0.12) For And XVI zcr~14 For Segue I zcr~17 For Sgrc zcr~7 28 dSph galaxies (Walker et al. 2009)13 And galaxies (Tollerud et al. 2013)

  16. 23 dSph 9 SPT-clusters

  17. CLS – 83 dSph

  18. Summary For 44 SPT – clusters 1 < M13 < 300 <Pc> ≈ 36(1 ± 0.37)eV/cm3, Sb ≈ 185(1 ± 0.9)keV cm2 For 9 SPT - clusters 10 < M13 < 80 <Pc> ≈ 34(1 ± 0.25)eV/cm3, Sb ≈ 200(1 ± 0.7)keV cm2 <1+zcr> ≈ 3.2(1 ± 0.04)M13-0.1 For 9 REXCESS clusters 10 < M13 < 70 <Pc> ≈ 25(1 ± 0.5)eV/cm3,Sb ≈ 320(1 ± 0.3)keV cm2 <1+zcr> ≈ 2.2(1 ± 0.1) For 41 dSph galaxies 10-7 < M13 < 10-4, 0.1 < M6 < 100 <P > ≈ 28(1 ± 0.8)eV/cm3, <1+zcr> ≈ 3.4(1 ± 0.15)M13-0.1

  19. B(zcr) – M12, observations

  20. Power spectrum of MDM model

  21. Mdmp≈107Mo /ms3 (keV)

  22. P=0.3Pcdm+0.7Pwdm(50eV), P=0.1Pcdm+0.65Pwdm(50eV)+0.25Pwdm(10keV) Press, Schechter 1974, Bond et al. 1991 Two composite MDM models

  23. RESULTS According to this criterion CDM model is rejected The WDM model with P=PWDM is consistent with observations when αw ≈ 1, mw ≈ 3keV For MDM model with P=0.3PCDM+0.7PWDM fCDM ≈ 0.8, fWDM ≈ 0.2, mw ≈ 50eV For MDM model with P=0.1PCDM+0.65PWDM1+0.25PWDM2 with mw1 ~ 50eV, mw2 ~ 10keV FINAL ANSWER - SIMULATIONS

  24. The end The end

  25. Small scale perturbations Linear evolution

  26. 28 dSph galaxies

  27. CLS-83

  28. Walker et. al, 2009, ApJ, 704, 1274 - 28 dSph objects name r sig_v +/- Mhalf +/- <rho> +/- (1 +zcr)/10 +/- kpc km/s 10^6M_o M_o/pc^3 Carina 0.14 6.60 1.20 3.40 1.40 0.320 0.120 0.12E01 0.53 Draco 0.22 9.10 1.20 11.00 3.00 0.230 0.06 0.11E01 0.32Fornax 0.34 11.70 0.90 27.00 0.50 0.160 0.03 0.99E00 0.04LeoI 0.13 9.20 1.40 6.50 2.10 0.660 0.210 0.12E01 0.44LeoII 0.12 6.60 0.70 3.10 0.90 0.400 0.120 0.12E01 0.39Sculptor 0.09 9.20 1.10 4.60 1.70 1.300 0.500 0.13E01 0.55Sextant 0.29 7.90 1.30 11.00 4.00 0.100 0.030 0.99E00 0.39UMi 0.15 9.50 1.20 7.80 2.20 0.550 0.150 0.12E01 0.37CVen I 0.56 7.60 0.40 19.00 2.00 0.025 0.003 0.84E00 0.10 Coma 0.08 4.60 0.80 0.90 0.35 0.490 0.180 0.13E01 0.56Hercules 0.33 3.70 0.90 2.60 1.40 0.017 0.009 0.89E00 0.53 Leo T 0.18 7.50 1.60 5.80 2.80 0.250 0.120 0.11E01 0.59Segue 1 0.03 4.301.20 0.31 0.19 3.010 0.800 0.17E01 1.06UMa I 0.32 11.90 3.50 26.10 6.00 0.200 0.120 0.10E01 0.29UMa II 0.14 5.70 1.40 2.60 1.40 0.230 0.120 0.12E01 0.68AndII 1.23 9.30 2.70 62.00 36.00 0.008 0.005 0.71E00 0.45Cetus 0.59 17.00 2.00 99.00 23.00 0.110 0.020 0.90E00 0.22Sgr^c 1.55 11.40 0.70 120.00 60.00 0.008 0.001 0.68E00 0.35Tucana 0.27 15.80 3.60 40.00 19.00 0.460 0.220 0.11E01 0.57Bootes 1 0.24 6.50 2.00 5.90 3.70 0.100 0.060 0.10E01 0.70Cven II 0.07 4.60 1.00 0.90 0.40 0.530 0.250 0.13E01 0.65Leo IV 0.12 3.30 1.70 0.73 0.73 0.110 0.110 0.11E01 1.26Leo V 0.04 2.40 1.90 0.14 0.14 0.450 0.450 0.14E01 1.57Segue 2 0.03 3.40 1.80 0.23 0.23 1.310 0.300 0.16E01 1.59AndIX 0.53 6.80 2.50 14.00 11.00 0.023 0.017 0.84E00 0.73AndXV 0.27 11.00 6.00 19.00 2.00 0.230 0.250 0.10E01 0.22 -----------------------------------------------------------------------------------------------mns 0.16E01 0.35 sig 0.23E00 0.33 Problems of detection and description r corresponds to L(r)=Ltot/2

More Related