1 / 28

LOOPS

LOOPS. “Life is just one damn thing after another.” -- Mark Twain “Life isn’t just one damn thing after another...it’s the same damn thing over and over and over again.” -- Edna St. Vincent Millay. LOOPS. while loops do while loops for loops. Turtle (courtesy of Logo).

milton
Télécharger la présentation

LOOPS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LOOPS “Life is just one damn thing after another.” -- Mark Twain “Life isn’t just one damn thing after another...it’s the same damn thing over and over and over again.” -- Edna St. Vincent Millay

  2. LOOPS • while loops • do while loops • for loops

  3. Turtle (courtesy of Logo) • Before we see loops, we need some tools • Turtle: will draw on the screen for us; based on Seymour Papert’s Logo, a language for beginners* • GeometricPatterns: instructions for turtle • Turtles know where they are and what direction they are facing • Turtles draw lines behind them as they move around screen • Now let’s look at Turtle’s public interface *See his Mindstorms, a provocative book on how kids “learn by doing”, and also the instrumented Legos, Mindstorms. Loops

  4. Turtle’s Public Interface (1 of 2) • We have written Turtle class: public class Turtle extends gfx.Shape { /* some instance variables here */ /* constructor for Turtle takes panel where turtle “lives” as parameter to setup an association */ public Turtle(DrawingPanel panel) { // some code here, including storing panel } /* reset turtle to center of container */ public void home() { // some code here } /* turn right specified number of degrees */ public void right(int degrees) { // some code here } /* turn left specified number of degrees */ public void left(int degrees) { // some code here } // continued... Loops

  5. Turtle’s Public Interface (2 of 2) /* move forward specified distance, drawing line as turtle moves */ public void forward(int distance) { // some code here } /* move backward specified distance, drawing line as turtle moves */ public void back(int distance) { // some code here } /* move turtle to specified position without drawing line */ public void setLocation(java.awt.Point loc) { // some code here } /* returns turtle’s drawing panel */ public DrawingPanel getPanel() { // some code here } } // end of class Turtle Loops

  6. Drawing with Turtle • Need class to tell Turtle how to draw some basic shapes • First, determine what shapes we want • this lecture: square, random walk • next lecture: recursive spiral, tree, fractal • How will we code it? • create GeometricPatterns class which defines methods for drawing each shape • methods control turtle, so it needs a reference to the instance, _turtle • geometric patterns do not contain a Turtle, so use a standard pattern of passing a Turtle reference in the constructor and storing it. • Time for some code! public class GeometricPatterns { private Turtle _turtle; // draws each pattern public GeometricPatterns(Turtle newTurtle){ _turtle = newTurtle; } // methods for each geometric pattern to // follow... } Loops

  7. A Repetitive Solution • Let’s write the drawSquare method in the GeometricPatterns class • Brute force: write line of code for each side public void drawSquare(int sideLen) { _turtle.forward(sideLen); _turtle.right(90); _turtle.forward(sideLen); _turtle.right(90); _turtle.forward(sideLen); _turtle.right(90); _turtle.forward(sideLen); _turtle.right(90); } • What if we wanted to make more general method that handles pentagons or octagons? • need to call forward and right for each side • cannot fix how many sides we need in generic method • There must be an easier way! Loops

  8. Looping • Causes computer to execute section of code repeatedly • uses booleans (true and false) as loop conditions; when boolean is false, the loop condition equals the exit condition and the loop is terminated • as with conditionals, section of code can be single line or many lines enclosed in curly braces • section of code executed is typically called the loop’s body • Three loop structures in Java • while loop • do while loop • for loop • Differ only in relation between body and loop condition • some loops execute body and then test; others test before executing body • Let’s look at while loops first Loops

  9. The while loop • Execute while certain condition is true • tests loop condition before executing body • if loop condition is false first time through, the body is not executed at all while (<loop condition>) { <loop body> } • Examples of loop conditions: • numClasses < 30 • peopleStanding <= maxPeople • this.checkAmount() <= acctBalance • isSquare() // predicate; returns boolean • Multiple conditions can be combined using logical operators (and, or, not) (numClasses >= 3) && (numClasses <=5) (peopleStanding <= maxPeople) || (maxPeople < 50) Loops

  10. A while Flowchart • while loops continue while loop condition is true • Loop condition can be any boolean expression <previous statement> Is <loop condition> TRUE? Yes <loop body> No <rest of program> Loops

  11. Syntax: Random Walk Using While • Method of GeometricPatterns class: • draws random lines while turtle is within its frame public void randomWalk() { DrawingPanel turtlePanel = _turtle.getPanel(); /* while _turtle’s position is inside its frame, move _turtle randomly. */ while (turtlePanel.contains( _turtle.getLocation())) { _turtle.forward ((int)(Math.random()*15)); //cast _turtle.right ((int)(Math.random()*360)); //cast } } • On last step of walk, turtle will end up moving forward out of panel but line will not be drawn • it is clipped by Swing since we don’t explicitly tell it to wrap • no point in continuing to walk outside of the panel Loops

  12. The do while Loop • do while always executes loop body at least once by switching order of test and body • <loop condition> is boolean expression. <previous statement> <loop body> Is <loop condition> TRUE? Yes No <rest of program> Loops

  13. Example: Another Random Walk • Method of GeometricPatterns class: • draws random lines while turtle is within its panel • starts turtle in center of drawing panel, so first step is guaranteed to be within drawing panel public void centeredRandomWalk() { DrawingPanel panel = _turtle.getPanel(); // moves turtle to Frame’s center _turtle.home(); // moves turtle randomly within frame do { _turtle.forward ((int)(Math.random()*15)); _turtle.right ((int)(Math.random()*360)); } while (panel.contains (_turtle.getLocation())); //note semicolon at end of while statement } Loops

  14. do while vs. while • In both loops • stops executing body if loop condition is false • you must make sure loop condition becomes false by some computations lest you “infinite loop” • infinite loop means your loop’s loop condition is such that it will never turn false, i.e., the exit condition never occurs • do while • body always executed at least once • loop condition tested at bottom of loop • while • may not execute at all • loop condition tested before body; loop condition variables must be set before loop entry • useful for screening bad data that might cause statements within loop to fail (e.g., while (ref != null) ) • What is the difference between these two? while(!_stomachIsFull) do { this.eatIceCream(); this.eatIceCream(); } while (!_stomachIsFull); Loops

  15. for Loops • Most specialized loop construct for (<init-expr>; <loop condition>; <update>) { <loop body> } • <init-expr>: expression for setting initial value of loop counter (traditionally use single character identifier; e.g., i); counter aka index • <loop condition>: (true or false) test involving loop counter to determine if loop should execute • <update>: expression that modifies loop counter • <init-expr> is executed at start of loop code, <loop condition> is checked at the start of every loop (including the first), and <update> is run at the end of every <loop body>, just before returning to the top of the loop . • Typically used to execute loop body predetermined number of times • while and do while loops can execute body for undetermined number of times; based on boolean Loops

  16. drawSquare Revisited • Better way of drawing square than explicitly drawing each side: public void drawSquare(int sideLen) { /* start with integer i initialized to 0; execute as long as i < 4; each execution increments i by 1 */ for (int i = 0; i < 4; i++) { _turtle.forward(sideLen); _turtle.right(90); } } Loops

  17. for Flowchart • for loop has four parts • initialize value of counter • test loop condition • loop body • counter update <init-counter> <update counter> Is <loop condition> TRUE? Yes <loop body> No <rest of program> Loops

  18. Choosing the Right Loop • for loop is called definite loop because you can typically predict how many times it will loop. while and do while loops are indefinite loops, as you do not know a priori when they will end. • for loop is typically used for math-related loops like counting finite sums • while loop is good for situations where boolean condition could turn false at any time • do while loop is used in same type of situation as while loop, but when code should execute at least once • When more than one type of loop will solve problem, use the cleanest, simplest one Loops

  19. Syntax: Nested Loops • Loops, much like we saw with if statements, can be nested! • Example: drawFilledSquare public void drawFilledSquare(int sideLen) { // fill in concentric squares for (int i = 0; i < (sideLen / 2); i++) { // drawSquare (slide #16) contains a loop this.drawSquare(sideLen - (2*i)); // position turtle for next iteration _turtle.right(90); _turtle.forward(1); _turtle.left(90); _turtle.forward(1); } } • What does this do? Loops

  20. Turtle starts upright Rotate 90 degrees right Move forward 1 unit Rotate 90 degrees left Move forward 1 unit Nested Loops in English • Turtle is represented by • What is outer loop doing? • first draws concentric square • then the last 4 lines move turtle right and up 1 unit • drawFilledSquare draws square using nested loop Loops

  21. Decrementing Counter • We can count backwards in our loop too • just change counter update expression • in fact, we can update however we want public void countFingers() { /* change counter to decrement, and change the loop condition accordingly */ for (int i = 4; i > 0; i--) hand.hideFinger(i); // hide a finger } • for loops end in one of two ways • when counter value equals limit (for < or >) • when counter value “goes past” limit (for <= or >=) • thus, countFingers() would hide 5 fingers if we used i >= 0 (not a good idea because Grover only has 4 fingers) • Beware of such “off-by-one” errors!!! Four little fingers, Three little fingers, Two... Loops

  22. break • As with switch, break causes immediate exit from a flow-of-control structure (e.g., while, do while, for ) • Example: //we’d like to eat 10 cookies (they’re small!) for (int i = 0; i < 10; i++) { if(_cookieJar.numberOfCookies() == 0 ){ break;// if there are no cookies left, // we should break out of the loop // because we can’t eat any more! } this.eatACookie(); //we know there are some //left } // execution continues here after loop is done // or after break statement • Execution continues with first line of code after the structure • There are other ways to do this loop… Loops

  23. continue • When executed in while, for, do while structure, continue skips remaining statements in body of that structure, and proceeds with next iteration of loop • useful if there is list of data that you are looping over and you want to skip processing of data that is somehow “illegal” • Example: // we’d like to try on shirts that hang on a // rack for (int i = 0; i < 20; i++) { if( !rack.isShirtOnHanger(i) ) { // if there’s no shirt on the current // hanger, skip to the next iteration continue; }// only do this if there’s a shirt on the // hanger Shirt toTry = rack.shirtOnHanger(i); //get // the shirt this.tryOnShirt( toTry ); // try the shirt on } // more code here • In while and do while structure, execution continues by evaluating loop-continuation condition • In for structure, execution continues by incrementing counter and then evaluating loop condition Loops

  24. Boolean Flags • A boolean flag is a boolean variable that denotes a condition (e.g., done, working, available) • set in one place, tested in another • Boolean flags can also be used as the loop condition • Example (implementing a for loop, using while): boolean done = false; int i = 0; while (!done) { i++; if (i == 5) done = true; } • Notice that boolean flag is set within loop • in previous slides all checking was done through delegation, here we do it ourselves Loops

  25. Empty Intervals • What happens if we try to add integers in this loop? public int sum() { int temp_sum = 0; for (int i = 1; i < 1; i++) temp_sum += i; return temp_sum; } • Answer: Body of loop is not executed • Why? • boolean is false for initial value of counter • Correct example: /* This method sums all numbers from 1 up to and including the number specified */ public int sum(int number) { int temp_sum = 0; for (int i = 1; i <= number; i++) temp_sum += i; return temp_sum; } Loops

  26. Off-by-one Errors • Occur when loop executes one too many or one too few times • Example: Add even integers from 2 to number, inclusive ... count = 2; result = 0; while (count < number) { result += count; count += 2; } • Produces incorrect result if number is assigned an even value. Values from 2 to number-2 will be added (i.e., number excluded) • Should be: while (count <= number) { ... } • Now, value of number is included in summation Loops

  27. Syntax: Other Loop Errors • Make sure test variables have proper values before loop is entered ... product = 0; do { product *= 2; } while (product < 100); /* what will happen here? */ • Make sure tests check proper conditions ... for (int i = 1; i != 100; i += 2) { // do something here } /* will we ever get here? */ • ALWAYS HAND SIMULATE first, last, and typical case through a loop to avoid off-by-one or infinite loop errors • the first and last cases of a loop’s execution are called boundary or edge conditions • hand simulation doesn’t just apply to loops, use it for everything! Trust us – it saves debugging time!!! Loops

  28. Which Loop to Use? • You want to bake a pie for each of your twelve friends • Your job is to stand at the end of the bowling alley, and pick up all the pins, one by one, that have been knocked over • Ask a question. Keep asking while the answer is incorrect Loops

More Related