1 / 25

Prospect for Top Properties Measurement in Atlas

Prospect for Top Properties Measurement in Atlas. A.Onofre (onofre@lipc.fis.uc.pt). Top Mass Top Charge Top Spin and Spin Correlations Top t  Wb decay Top FCNC decays FCNC in Single-t Production tt Resonances. Outline. Top Properties. Conclusions.

Télécharger la présentation

Prospect for Top Properties Measurement in Atlas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Prospect for Top Properties Measurement in Atlas A.Onofre (onofre@lipc.fis.uc.pt)

  2. Top Mass • Top Charge • Top Spin and Spin Correlations • Top tWb decay • Top FCNC decays • FCNC in Single-t Production • tt Resonances Outline • Top Properties • Conclusions

  3. Most of the Studies done with tt Events • Top Mass, Top Charge, Top Spin and Spin Correlations, Top tWb decay and tt Resonances W(had) ≥4 jets,DR=0.4 pT>40GeV b t(had) e,m W 2 b-jets pT>20GeV e,m W b 2 b-jets 2 leptons t(lep) pT>20GeV Semileptonic Topology Dileptonic Topology • Top FCNC decays and FCNC in Single-t Production use different analyses

  4. SM (Qtop=+2/3): • Exotics (Qtop= -4/3): b(-1/3) b(-1/3) t(-4/3) l-(-1) t(2/3) l+(+1) W- W+ nl Exotic nl SM • For top quark determination • I) Determination of b-jet charge • II) Correct (lepton, b-jet) pairing Critical moment (Atlfast, PHYS-2003-35) • Top Charge

  5. A) Weighting Technique: B) Semileptonic Decay: • Invariant mass criteria: Mtop=175 GeV 1) Semileptonic Channel l and b1from the same top l and b2from different tops 2) Dileptonic Channel • Top Charge I) Determination of b-jet Charge: II) Correct (l±, b) Pairing: ( Cut optimized for mcr=145 GeV )

  6. A) Weighting Technique: -0.0842  0.0044 b 0.0868  0.0043 b L=1fb-1 ( Eff.=4.1% Purity: 89.3% ) B) Semileptonic Decay: (A. Tonoyan) l- l+ (B.Zilka,S.Tokar) • Top Charge

  7. tt Spin Correlation Parameters: Although t and t not polarised in tt pairs, their spins are correlated Mtt<550 GeV A=0.42 AD =-0.29 Mtt<550 GeV • Top Spin and Spin Correlations (Zhu Chengguang) • Double Angular Distributions:

  8. ATLFAST (reminder) L=10fb-1 (Eur.Phys.J.C44S2 2005 13-33) SM Error (±stat ±syst) A 0.42 0.014 0.023 AD -0.29 0.008 0.010 Semileptonic • Top Spin and Spin Correlations • Semileptonic + Dileptonic • Syst (Eb-jet,mtop,FSR) • 4-6% precision • FULLSIM (CSC) L=1fb-1 Preliminary Selection efficiency 2.9%(2.7% for rome)

  9. Isolated single electron trigger Single muon trigger • Top Spin and Spin Correlations • Trigger Studies: • Results (Preliminary): Level of Precision of A, AD ~40% L=1fb-1

  10. Level of Precision of Alj~40% (Low MC) Alj Alj~30% (High MC) L=1fb-1 • Top Spin and Spin Correlations • Spin Asymmetries can also be used: (spin analysing power al+=1.0, aj=-0.51) • Error versus Luminosity: SM (LO): Alj=-0.0396

  11. V-A SUPPRESSED • Top Decays: 1) the tWb decay • By measuring the fraction of longitudinal W´s in top quark decays we are: • Testing a Standard Model prediction: F0=0.7 FL=0.3 • Probing the structure of the Wtb vertex

  12. Top Decays: 1) the tWb decay • How to measure the W Helicity Fractions? Using lepton angular distribution (with respect to top direction) in W cm system: SM(LO): F0=0.703 , FL=0.297 , FR=3.6x10-4 (NLO): F0=0.695 , FL=0.304 , FR=0.001

  13. ATLFAST (reminder) L=10fb-1 (Eur.Phys.J.C44S2 2005 13-33) • FULLSIM (CSC) L=1fb-1 • Top Decays: 1) the tWb decay • Syst ( Eb-jet,mtop,FSR ) • dF0/F0~ 2%;dFR ~ 0.01 • Results (Preliminary) • dF0/F0~ 6%;dFR ~ 0.03 (Zhu Chengguang)

  14. Top Decays: 1) the tWb decay • Anomalous Couplings @ the Wtb Vertex VR,gL,gR Change F0,FL,FR Eur.Phys.J. C50 (2007) 519-533 • How to Probe Anomalous Couplings? • Extract Limits from F0,FL and FR (and ratios) • Fit angular distr. with VR, gL and gR (mb≠0) • Use Angular Asymmetries

  15. Top Decays: 1) the tWb decay • Angular Asymmetries: (SM, LO): AFB=-0.2225 , A+=0.5482 , A-=-0.8397 (NLO): AFB=-0.2269 , A+=0.5429 , A-=-0.8402

  16. (SM, LO) • FULLSIM (CSC) L=1fb-1 Likelihood Distributions: e+m e m • Top Decays: 1) the tWb decay (SN-ATLAS-2007-064) • ATLFAST (reminder) L=10fb-1 Three Different Samples: e, m, e+m

  17. Error Versus Luminosity A- A+ L~1fb-1 Flavour at the LHC Era Yellow Report (in prep.) • Top Decays: 1) the tWb decay (N. Castro) • Asymmetries • Anomalous Couplings

  18. tqg tqZ tqg • Top Decays: 2) Rare decays (FCNC) • Top FCNC Decays: Br(tqX) in Several Models: • Studied Decays: FCNC Decays in tt Events

  19. Current Limits: • Expected 95% CL Limits: Br(tqg) <1.3x10-3 • 5s Results: Br(tqg) >9.4x10-5 Br(tqZ) >4.4x10-4 Br(tqg) >4.3x10-3 • Top Decays: 2) Rare decays (FCNC) In the absence of signal: • ATLFAST (reminder) L=10fb-1 (SN-ATLAS-2007-059)

  20. 5s Results: Br(tqg) ~ 10-3 Br(tqZ) ~ 10-2 - 10-3 Br(tqg) ~ 10-2 • Top Decays: 2) Rare decays (FCNC) • FULLSIM L=1fb-1 • Results Crucially Depend on Tagging Efficiencies (e, m, b, jets and g) • Likelihood Method works (need to have well defined shapes) • Gluon Channel more difficult (F. Veloso)

  21. “Direct” • ATLFAST (reminder) L=10fb-1 kqg=anomalous coupling L =scale of new physics • Results: • Event Selection: 1 lep ( pT>20GeV, |h|<2.5 ) 1 b-jet ( pT>40GeV, |h|<2.5 ) pT > 20GeV ( W and t pT, mbl, mT(W), HT, mt ) • Systematics: • Dssignal (8%), btag (6%), ISR (3.5%), • PileUp (4%) • Total ~ 12% (hep-ex/0702005) Estimate: e(ug)=1.08%, e(cg)=1.81% Back: W+j(80%), single-t(9%) Br(tug)~O(10-3) Br(tcg)~O(10-2) • FCNC in Single-t Production (T.L. Cheng)

  22. The X-section: The X-section: • FCNC in Single-t Production • The Direct Production is not the full Story • The ggqt Processes: Phys.Rev. D74 (2006) 014006 • The gqgt Processes:

  23. L=10fb-1 • Event Selection: 1 lep ( pT>30GeV, |h|<2.5 ) 1 b-jet ( pT>50GeV, |h|<2.5 ) 1 non b-jet ( pT>25GeV, |h|<2.5 ) pT > 25GeV • Likelihood Analysis Cos(ql) PT(W) Very Preliminary e(qg)=1.4% Back:W+j(50%),t-chan(25%) tt(21%) Cos(qn*) mlb • FCNC in Single-t Production • Just To Have an Idea of the Results: • New Contributions Included in MC (TopReX 4.20)

  24. 95% CL Limits: • 5s Discovery: Br(tqg) ~O(10-4) Br(tqg) ~ O(10-3-10-4) 5s Discovery 95% CL Limit: • FCNC in Single-t Production • Just To Have an Idea of the Results for : L=10fb-1 • 5s and 95% CL Limits obtained • New Contributions Give Same Order of Magnitude Results as Direct Production Mechanism • 1 Order of magnitude better than ttbar for the gluon channel

  25. Conclusions • Atlas will allow to perform precision studies • Object Reconstruction (e, m, t, jets and g) Requires Care • Several Methods Available to Extract Physical Observables • Already @ 1fb-1: • Top Charge (2/3 versus -4/3) > 5s significance • Spin Correlation Parameters (A,AD) ~ 40% error • Spin Asymmetries ~ 40% error • W helicity fractions (F0, FL, FR )~ 6%, ~10% and ~0.03 error • Angular Asymmetries (A+,A-) ~ 3% and 1% error • Anomalous Wtb Couplings (VR, gL, gR ) ~ 0.1, 0.05 and 0.03 error • FCNC top Decays (Br[tqX], X=g,Z,g) ~ 10-2 - 10-3

More Related