210 likes | 317 Vues
This work in progress examines the Twin Higgs Model and its implications for collider phenomenology. The study focuses on new particles, including heavy gauge bosons and a heavy top quark, and explores the model parameters that arise from the Twin Higgs mechanism. We delve into the nature of Higgs fields as pseudo-Goldstone bosons, how left-right symmetry affects mass conservation, and potential experimental signatures associated with the model. Our findings aim to enhance the understanding of electroweak symmetry breaking and propose the detection of new physics at the TeV scale.
E N D
Phenomenology of Twin Higgs Model Shufang Su • U. of Arizona Hock-Seng Goh, Shufang Su Work in progress
Outline - • Twin Higgs Model • Twin Higgs mechanism • Left-right Twin Higgs model • New particles and model parameters • Collider phenomenology • Heavy top quark • Heavy gauge bosons • Higgses
Twin Higgs mechanism - Higgs as pseudo-Goldstone boson of a global symmetry Its mass is protected against radiative corrections • Little Higgs mechanism: collective symmetry breaking • Twin Higgs mechanism: discrete symmetry Mirror symmetry Type IA TH: Chacko, Goh, Harnik, hep-ph/0506256 Type IB TH: Chacko, Nomura, Papucci, Perez, hep-ph/0510273 Left-right symmetry Type II TH: Chacko, Goh, Harnik, hep-ph/0512088
Left-right Twin Higgs model • SM Higgs doublet • EWSB SM neutral Higgs: H 3 eaten by heavy gauge bosons - • Global U(4) , with subgroup SU(2)L SU(2)R U(1)B-L gauged • Left-right symmetry: gL=gR (yL=yR) A linear realization U(4) U(3) SU(2)L SU(2)R U(1)B-L SU(2)LU(1)Y 7 GB
Twin Higgs mechanism - Quadratic divergence forbidden by left-right symmetry gL=gR=g U(4) invariant, does not contribute to the mass of GB Log contribution: mH g2f / (4 ), natural for f TeV
Left-right Twin Higgs model - Fermion sector: Top quark mass: Top quark mass eigenstates: SM top and tH EW precision constraints on SU(2)R gauge boson mass f 2 TeV Introduce another Higgs field that only couples to gauge sector Which has a larger VEV
Left-right Twin Higgs model • SM Higgs doublet • EWSB SM neutral Higgs: H SU(2)L Higgs doublet H1, H20 • U(4) U(4), with gauged SU(2)LSU(2)RU(1)B-L + LR symmetry - Couple to gauge boson only 3 eaten by heavy gauge bosons Left 3 Higgses: neutral Higgs 0, charged Higgs U(4) U(3) SU(2)L SU(2)R U(1)B-L SU(2)LU(1)Y U(4) U(3) 7 GB 7 GB f2 f1
New particles - • Heavy gauge bosons:WH, ZH m2WH,ZH g2(f12+f22) • Heavy top:tH m2TH M2+y2f12 • Other SU(2)R Higgses: m2 g4/(162)f22 log(/gf2) 0 m20 B (f2/f1) B: small, (50-100 GeV)2 • Other SU(2)L Higgs H1m2H1, H20 H20 : soft symmetry breaking, O(f1)
Model parameters fixed by Higgs VEV - • Model parameters: f1, (f2, y), , M, B, • Determine particle masses and interactions = 4f1 or 2f1 M=150 GeV B=50 GeV = f1/2 fixed by top quark mass
Heavy top tHproduction - • single heavy top production • heavy top pair production
Heavy top tHdecay 3 b + 1 j + 1 lepton + missing ET j b W b l t tH l b j 1 b + 1 j + 1 lepton + missing ET W tH b -
Heavy gauge bosonproduction - • Drell-Yan process
ZHdecay b 2 b + 2 j + 1 lepton + missing ET q t W q ZH b l t W - • ZH
WHdecay tHb: 4b + 1 lepton + missing ET tHbW : 2b + 1 lepton + missing ET tHtZ: 2b + 3 lepton + missing ET - • WH
Higgses - SM Higgs • mH 150-170 GeV, depending on f1, and M • Higgs searches: • gg H ZZ* llll • gg H WW* ll • WBF qqH qqWW* qqll SU(2)R Higgs: 0, 0 bb j tb 2b + 1 lepton + missing ET
0 4 b + 1 lepton + missing ET b b t l W WH b 0 b - Neutral Higgs 0 • gg 0 bb, QCD background overwhelming • no W0, Z0 associated production (no such coupling) • bb0 , tb0,tt0cross section small • Produced via the decay of heavy particles
j b W b l t tH 3 b + 1 j + 1 lepton + missing ET b - Neutral Higgs • no W, Z associated production (no such coupling) • bb , tb,ttcross section small • Produced via the decay of heavy particles
H1, H20 - Higgs that couple to gauge boson only:H1, H20 • H1H20,H1H1, H20H20, associated production (small) • H20stable: missing energy • H1 H20 + soft jets/leptons if decay fast enough: appears as missing energy if decay slow: track ! H20: good dark matter candidates
M=0 case t + b (100%) - Top Yukawa: f1 v tH = (TL, tR), mtH = yf1 tSM = (tL, TR), mt = yv Gauge coupling Yukawa coupling • 0 tH tH • 0 tt • 0 tH t • H t t • H tH tH (small) • H tH t • W t b • W tH b • WH t b • WH tH b • Z t t • Z tH tH • Z tH t • ZH t t • ZH tH tH • ZH tH t • tH b • tb X
decay 0 bb: bbqq final states huge QCD bg H ZZ*, WW* small signal - • No two body decay • Leading decay: 3 body off-shell For M=0 discovery of almost all the particle are difficult except for ZH
Conclusions - • Left-right twin Higgs model: Higgs as pseudo-goldstone boson quadratic divergence forbidden by left-right symmetry • New particles • Heavy gauge boson: WH, ZH • Heavy top quark tH • New Higgses: 0, , H1, H20 (DM) • M0: rich collider phenomenology • M=0: difficult except for ZH • Future work • Pick certain channel for detailed study: background, cuts,… • Identify twin Higgs mechanism • Dark matter study • Comparison with other models, e.g., little higgs