Electroweak and top physics at hadron collider - PowerPoint PPT Presentation

electroweak and top physics at hadron collider n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Electroweak and top physics at hadron collider PowerPoint Presentation
Download Presentation
Electroweak and top physics at hadron collider

play fullscreen
1 / 108
Electroweak and top physics at hadron collider
66 Views
Download Presentation
more
Download Presentation

Electroweak and top physics at hadron collider

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Electroweak and top physics at hadron collider     たなか   れいさぶろう 田中 礼三郎 (岡大理)

  2. References • LEP • LEP EW working grouphttp://lepewwg.web.cern.ch/LEPEWWG/ • Tevatron • Run II Workshop on "QCD and Weak Boson Physics" Fermilab-Pub-00/297, Eds. U.Baur, R.K.Ellis and D.Zeppenfeld, Nov. 1999, 279p. http://www-theory.fnal.gov/people/ellis/QCDWB/QCDWB.html • "thinkshop2" top-quark physics for RUN-II & beyond Nov.2000 http://web.hep.uiuc.edu/home/kpaul/thinkshop/thinkshop_alt.html • LHC • Workshop on Standard Model Physics (and more) at the LHC 1999 CERN 2000-004, Eds. G.Altarelli and M.L.Mangano, May 2000, 529p. http://mlm.home.cern.ch/mlm/lhc99/lhcworkshop.html • ATLAS Detector and Physics Performance ATLAS-TDR 14/15, CERN/LHCC 99-14/15, May 1999. http://atlasinfo.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html

  3. Contents I. Tevatron and LHC Accelerator & Detector II. Electroweak physics LEP accelerator lineshape, aQED, sWW, MW, TGC III. Top quark physics stt,Mtop, single-top, ttH

  4. I. Tevatron and LHC

  5. Tevatron and LHC • Tevatron , LHC pp colliders Luminosity: TevatronRUN-I 0.1 fb-1 RUN-II 2 fb-1 (FNAL officially states 15 fb-1 as goal) LHCLow lumi(1033) 10 fb-1/year High lumi(1034) 100 fb-1/year [1 barn (b) = 10-24 cm-2, 1 fb = 10-15 b, 1 year p107 sec]

  6. Fermilab Fixed Target Area D0 CDF Wilson Hall 2km Tevatron Main injector N

  7. CDF (Collider Detector at Fermilab)

  8. Silicon Microstrip Tracker (SMT) D0

  9. CERN

  10. LHCaccelerator

  11. Liq.Ar EM calorimeter good e/g id, energy, ETmiss muon spectrometer air-core troidal magnet Bdl = 2~6Tm (4~8Tm) inner tracking system pixel, silicon strip, TRT 2T solenoid magnet good e/g id, t/b-tag ATLAS (A Toroidal LHC ApparatuS)

  12. 2Tesla Solenoidal Magnet 設計電流値の 8400 アンペアを 2000年12月26日午後1時15分に達成し喜びの関係者たち。

  13. SC Quadruple Magnet LHC加速器の衝突点でビームを絞るための超伝導四重極マグネットのプロトタイプ。 長さ6メートル。日本の高エネ研で開発し東芝で製造した16台がLHC加速器に 組み込まれる。

  14. TGC(Thin Gap Chamber)製作トリスタン冨士実験室B4 ミューオントリガーチェンバーはイスラエル・日本・中国が協力して作る。 日本は約1000台のチェンバーを高エネ研で量産し(写真)、神戸大学で 検査してからCERNに送る。

  15. トリガーチェンバーからの微小信号をソニーの半導体技術で作った特殊チップでデジタルトリガーチェンバーからの微小信号をソニーの半導体技術で作った特殊チップでデジタル に変える回路ボードの写真。2000年に23,400セットが日本で製造され中国で検査された。

  16. Silicon Micro-strip Detector 浜松ホトニクスで製造された6.4 cm角のシリコン 半導体検出器4枚をモジュールに組立てたもの。粒子の飛跡を高い精度で測定する。日本はこのモジュールを690台製造する。 日本のデザインが採用されたハイブリッド 回路フレキシブル基板。

  17. TMC(Time Memory Cell) 日本で開発中の時間測定チップの拡大写真(6 mm x 6 mm)。東芝の半導体技術 を使いチップあたりのトランジスター数は44万個。このチップは2万個をアトラスの 測定器に使う。

  18. GEANT4 オブジェクト指向のソフトウエア- 技術を用いた検出器シミュレーション プログラムの開発。

  19. 4T solenoid Compact muon spectrometer EM calorimeter PbWO4 for Hgg CMS (Compact Muon Solenoid)

  20. ABC at hadron collider • We never know total longitudinal momentum in any event. • Total transverse momentum of all particles is zero. transverse momentum pT = |p|sinq • transverse energy ET = E sinq • pseudo-rapidity h = -ln tan(q/2) • missing transverse energy ETmiss = En • Distance in pseudorapidity-azimuthal angle space (used in jet cone algorithm) DR=(D h)2 +(D)2 • Existence of minimum bias events. LHC: inelastic, non-diffractive s70mb  23 pile-up/crossing@1034 Tevatron RUN-II:  6 pile-up/crossing (Poisson)

  21. rapidity pseudo-rapidity h = -ln tan(q/2) q=90 h=0 q=40 h=1 q=5.7h=3 cf. ATLAS detector tracker |h| < 2.5 calorimeter |h| < 4.9 Jinnouchi(ICEPP) dN/dh distribution

  22. II. Electroweak physics

  23. Electroweak physics • Recent LEP results at LEP • lineshape • aQED • WW(CC03) cross section • Electroweak physics at Tevatron/LHC • W mass • TGC

  24. Great success of the Standard Model Number of the light neutrino species N=3 (not p). Precise prediction of Mtop=174.64.4 GeV (Osaka2000) (before discovery at Tevatron!). Indication of light Higgs from EW precision data. Gauge unification with SUSY at high-mass scale.  But Higgs sector is quasi-totally unknown ! LEP operation between 1989-2000

  25. 4 Experiments ALEPH (J.Steinberger) DELPHI (U.Amaldi) L3 (S.C.C.Ting) OPAL (ALDO.Michelini) LEP1(1989-1995) Z0 resonance scan  high statistics 15 millions 2 millions LEP2(1996-2000) above WW threshold Main Physics Goals at LEP1 High precision test of the Standard Model Z-lineshape, Asymmetries Search for new particles Higgs, SUSY Heavy flavor physics tau, bottom, charm QCD study Main Physics Goals at LEP2 Gauge boson properties of the Standard Model W mass, TGC Search for new particles Higgs, SUSY LEP Experiments

  26. August 2000

  27. January 2001 ALEPH dismantling

  28. Z peak data mass and width (Breit-Wigner denominator) hadronic pole cross section Pole leptonic asymmetry Z line shape

  29. final results of Z lineshape & AFB at LEP!

  30. LEP EW fit results Number of light neutrino species or dominant systematic error DMZ=1.7MeV: beam energy calibration Ds=0.025nb : Bhabha cross section

  31. LEP Fest, Oct. 2000

  32. QED a = dominant theoretical error

  33. Rhad s(GeV) Pietrzyk ‘00

  34. Eidelman&Jegerlehner Davier&Höcker MHiggs < 170 GeV@95% C.L.  Eidelman&Jegerlehner Pietrzyk MHiggs < 210 GeV@95% C.L. Higgs mass limit (Osaka2000)

  35. … not gauge invariant for off-shell W, but backgrounds are small (few per mil) in ‘tHooft-Feynman gauge. WW production at LEP

  36. Gauge cancellation observed ZWW vertex exists However puzzled by -3 than GENTLE at 189 GeV (Lepton&Photon 1999) WW Cross Section