1 / 108

Electroweak and top physics at hadron collider

Electroweak and top physics at hadron collider.     たなか   れいさぶろう 田中 礼三郎 ( 岡大理 ). References. LEP LEP EW working group http://lepewwg.web.cern.ch/LEPEWWG/ Tevatron Run II Workshop on "QCD and Weak Boson Physics"

more
Télécharger la présentation

Electroweak and top physics at hadron collider

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electroweak and top physics at hadron collider     たなか   れいさぶろう 田中 礼三郎 (岡大理)

  2. References • LEP • LEP EW working grouphttp://lepewwg.web.cern.ch/LEPEWWG/ • Tevatron • Run II Workshop on "QCD and Weak Boson Physics" Fermilab-Pub-00/297, Eds. U.Baur, R.K.Ellis and D.Zeppenfeld, Nov. 1999, 279p. http://www-theory.fnal.gov/people/ellis/QCDWB/QCDWB.html • "thinkshop2" top-quark physics for RUN-II & beyond Nov.2000 http://web.hep.uiuc.edu/home/kpaul/thinkshop/thinkshop_alt.html • LHC • Workshop on Standard Model Physics (and more) at the LHC 1999 CERN 2000-004, Eds. G.Altarelli and M.L.Mangano, May 2000, 529p. http://mlm.home.cern.ch/mlm/lhc99/lhcworkshop.html • ATLAS Detector and Physics Performance ATLAS-TDR 14/15, CERN/LHCC 99-14/15, May 1999. http://atlasinfo.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html

  3. Contents I. Tevatron and LHC Accelerator & Detector II. Electroweak physics LEP accelerator lineshape, aQED, sWW, MW, TGC III. Top quark physics stt,Mtop, single-top, ttH

  4. I. Tevatron and LHC

  5. Tevatron and LHC • Tevatron , LHC pp colliders Luminosity: TevatronRUN-I 0.1 fb-1 RUN-II 2 fb-1 (FNAL officially states 15 fb-1 as goal) LHCLow lumi(1033) 10 fb-1/year High lumi(1034) 100 fb-1/year [1 barn (b) = 10-24 cm-2, 1 fb = 10-15 b, 1 year p107 sec]

  6. Fermilab Fixed Target Area D0 CDF Wilson Hall 2km Tevatron Main injector N

  7. CDF (Collider Detector at Fermilab)

  8. Silicon Microstrip Tracker (SMT) D0

  9. CERN

  10. LHCaccelerator

  11. Liq.Ar EM calorimeter good e/g id, energy, ETmiss muon spectrometer air-core troidal magnet Bdl = 2~6Tm (4~8Tm) inner tracking system pixel, silicon strip, TRT 2T solenoid magnet good e/g id, t/b-tag ATLAS (A Toroidal LHC ApparatuS)

  12. 2Tesla Solenoidal Magnet 設計電流値の 8400 アンペアを 2000年12月26日午後1時15分に達成し喜びの関係者たち。

  13. SC Quadruple Magnet LHC加速器の衝突点でビームを絞るための超伝導四重極マグネットのプロトタイプ。 長さ6メートル。日本の高エネ研で開発し東芝で製造した16台がLHC加速器に 組み込まれる。

  14. TGC(Thin Gap Chamber)製作トリスタン冨士実験室B4 ミューオントリガーチェンバーはイスラエル・日本・中国が協力して作る。 日本は約1000台のチェンバーを高エネ研で量産し(写真)、神戸大学で 検査してからCERNに送る。

  15. トリガーチェンバーからの微小信号をソニーの半導体技術で作った特殊チップでデジタルトリガーチェンバーからの微小信号をソニーの半導体技術で作った特殊チップでデジタル に変える回路ボードの写真。2000年に23,400セットが日本で製造され中国で検査された。

  16. Silicon Micro-strip Detector 浜松ホトニクスで製造された6.4 cm角のシリコン 半導体検出器4枚をモジュールに組立てたもの。粒子の飛跡を高い精度で測定する。日本はこのモジュールを690台製造する。 日本のデザインが採用されたハイブリッド 回路フレキシブル基板。

  17. TMC(Time Memory Cell) 日本で開発中の時間測定チップの拡大写真(6 mm x 6 mm)。東芝の半導体技術 を使いチップあたりのトランジスター数は44万個。このチップは2万個をアトラスの 測定器に使う。

  18. GEANT4 オブジェクト指向のソフトウエア- 技術を用いた検出器シミュレーション プログラムの開発。

  19. 4T solenoid Compact muon spectrometer EM calorimeter PbWO4 for Hgg CMS (Compact Muon Solenoid)

  20. ABC at hadron collider • We never know total longitudinal momentum in any event. • Total transverse momentum of all particles is zero. transverse momentum pT = |p|sinq • transverse energy ET = E sinq • pseudo-rapidity h = -ln tan(q/2) • missing transverse energy ETmiss = En • Distance in pseudorapidity-azimuthal angle space (used in jet cone algorithm) DR=(D h)2 +(D)2 • Existence of minimum bias events. LHC: inelastic, non-diffractive s70mb  23 pile-up/crossing@1034 Tevatron RUN-II:  6 pile-up/crossing (Poisson)

  21. rapidity pseudo-rapidity h = -ln tan(q/2) q=90 h=0 q=40 h=1 q=5.7h=3 cf. ATLAS detector tracker |h| < 2.5 calorimeter |h| < 4.9 Jinnouchi(ICEPP) dN/dh distribution

  22. II. Electroweak physics

  23. Electroweak physics • Recent LEP results at LEP • lineshape • aQED • WW(CC03) cross section • Electroweak physics at Tevatron/LHC • W mass • TGC

  24. Great success of the Standard Model Number of the light neutrino species N=3 (not p). Precise prediction of Mtop=174.64.4 GeV (Osaka2000) (before discovery at Tevatron!). Indication of light Higgs from EW precision data. Gauge unification with SUSY at high-mass scale.  But Higgs sector is quasi-totally unknown ! LEP operation between 1989-2000

  25. 4 Experiments ALEPH (J.Steinberger) DELPHI (U.Amaldi) L3 (S.C.C.Ting) OPAL (ALDO.Michelini) LEP1(1989-1995) Z0 resonance scan  high statistics 15 millions 2 millions LEP2(1996-2000) above WW threshold Main Physics Goals at LEP1 High precision test of the Standard Model Z-lineshape, Asymmetries Search for new particles Higgs, SUSY Heavy flavor physics tau, bottom, charm QCD study Main Physics Goals at LEP2 Gauge boson properties of the Standard Model W mass, TGC Search for new particles Higgs, SUSY LEP Experiments

  26. August 2000

  27. January 2001 ALEPH dismantling

  28. Z peak data mass and width (Breit-Wigner denominator) hadronic pole cross section Pole leptonic asymmetry Z line shape

  29. final results of Z lineshape & AFB at LEP!

  30. LEP EW fit results Number of light neutrino species or dominant systematic error DMZ=1.7MeV: beam energy calibration Ds=0.025nb : Bhabha cross section

  31. LEP Fest, Oct. 2000

  32. QED a = dominant theoretical error

  33. Rhad s(GeV) Pietrzyk ‘00

  34. Eidelman&Jegerlehner Davier&Höcker MHiggs < 170 GeV@95% C.L.  Eidelman&Jegerlehner Pietrzyk MHiggs < 210 GeV@95% C.L. Higgs mass limit (Osaka2000)

  35. … not gauge invariant for off-shell W, but backgrounds are small (few per mil) in ‘tHooft-Feynman gauge. WW production at LEP

  36. Gauge cancellation observed ZWW vertex exists However puzzled by -3 than GENTLE at 189 GeV (Lepton&Photon 1999) WW Cross Section

More Related