1 / 57

Search for heavy neutrino in K‾ → µ‾ ν γ decay at ISTRA+ setup

ISTRA+. Search for heavy neutrino in K‾ → µ‾ ν γ decay at ISTRA+ setup. IHEP U-70 ( Protvino , Russia). Viacheslav Duk , INR RAS ISTRA+ collaboration. Plan. LSND/KARMEN/ MiniBooNE anomaly and heavy sterile neutrino ν h Search for ν h in kaon decays ISTRA+ setup

more
Télécharger la présentation

Search for heavy neutrino in K‾ → µ‾ ν γ decay at ISTRA+ setup

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ISTRA+ Search for heavy neutrino in K‾→ µ‾ ν γ decay at ISTRA+ setup IHEP U-70 (Protvino, Russia) ViacheslavDuk, INR RAS ISTRA+ collaboration

  2. Plan • LSND/KARMEN/MiniBooNE anomaly and heavy sterile neutrino νh • Search for νh in kaon decays • ISTRA+ setup • Event selection for K‾→ µ‾ ν γ • Signal extraction • Limits for |Uµh|2 • Conclusions V.A.Duk, INR RAS

  3. Kaon decays: motivation experiment theory • Relatively easy to get kaon beams • Possibility to do precise measurements • Low uncertainties in calculations within Standard Model (SM) • New Physics (NP) contributions • Check SM predictions • Search for NP V.A.Duk, INR RAS

  4. Motivation for this work Paper by S.N.Gninenko (INR RAS) Resolution of puzzles of LSND, KARMEN and MiniBooNE experiments Phys.Rev.D83:015015,2011. arXiv: 1009.5536 V.A.Duk, INR RAS

  5. Neutrino oscillations: LSND V.A.Duk, INR RAS

  6. Neutrino oscillations: KARMEN V.A.Duk, INR RAS

  7. Neutrino oscillations: MiniBooNE, neutrino mode V.A.Duk, INR RAS

  8. Neutrino oscillations: MiniBooNE, anineutrino mode Above 475 MeV: Event excess 475-1250 MeV: 20.9±14.0 475-3000 MeV: 24.7±18.0 Below 475 MeV: Event excess 200-475 MeV: 18.5±14.3 V.A.Duk, INR RAS

  9. LSND/KARMEN/MiniBooNE anomalies: summary V.A.Duk, INR RAS

  10. Possible explanation of experimental results(S.Gninenko,INR RAS) Origin of excess V.A.Duk, INR RAS

  11. Possible explanation (S.N.Gninenko) New weakly interacting particle νh: • Produced in NC • Mixing with νμ ( must be in CC, e.g. kaon decays) or separate vertex (may be in NC only) • Decays radiatively via μtr V.A.Duk, INR RAS

  12. Properties of a new particle νh • m > 40 MeV: no event excess inKARMEN (threshold effect) • m < 80 MeV: νh production inLSND suppressed by phase space factor for m > 80MeV • τ(νh) > 10-11 sec: from LEP constraints: BR(Z→ννh) x BR(νh → νγ) < 2.7 x 10-5 • τ(νh)< 10-9 sec: νh‘s decay withinMiniBooNE detector volume • 10-3 < |Uμh|2 < 10-2 : from event excess inMiniBooNE experiment V.A.Duk, INR RAS

  13. New weakly interacting particle νh 40 MeV < m(νh) < 80 MeV 10-3 < |Uμh|2< 10-2 10-11 sec < τ(νh)< 10-9 sec Decays mostly as νh→νγ V.A.Duk, INR RAS

  14. νh : limits from pion and kaon decays Muon energy in 2-body kaon decay V.A.Duk, INR RAS

  15. Search for νh in kaon decays • K→μνh , νh →νγ: • peak in Eμ(cms) • signature the same as for K→ µ ν γ • no background from K→μνμ • sensitive to low masses of νh • secondary decay vertex • K→μνh : • peak in Eμ(cms) • background from K→μνμ • insensitive to low masses of νh because of resolution Muon energy in 2-body kaon decay Suitable for ISTRA+ V.A.Duk, INR RAS

  16. ISTRA+ collaboration • Institute for High Energy Physics, Protvino (IHEP) • Institute for Nuclear Research, Moscow (INR) • Joint Institute for Nuclear Research, Dubna (JINR) ISTRA+ V.A.Duk, INR RAS

  17. ISTRA+ setup T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 .S5 (prescaled by a factor of ~10) T1=T0.(∑SP1 > MIP) C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope V.A.Duk, INR RAS

  18. ISTRA+ setup: beam part T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 .S5 (prescaled by a factor of ~10) T1=T0.(∑SP1 > MIP) C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope V.A.Duk, INR RAS

  19. ISTRA+ setup: decay volume T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 .S5 (prescaled by a factor of ~10) T1=T0.(∑SP1 > MIP) He vacuum C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope V.A.Duk, INR RAS

  20. ISTRA+ setup: magnetic spectrometer T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 .S5 (prescaled by a factor of ~10) T1=T0.(∑SP1 > MIP) C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope V.A.Duk, INR RAS

  21. ISTRA+ setup: ECAL, HCAL T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 .S5 (prescaled by a factor of ~10) T1=T0.(∑SP1 > MIP) C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope V.A.Duk, INR RAS

  22. K→µνh (νh→νγ) event reconstruction: primary and secondary vertex for signal νμ γ Pγcalculated using A, B K B A μ ν Pγcalculated using A, B: additional energy smearing νh γ K B A μ Eνh ~ 240 MeV , mνh ~ 40–80 MeV smearing not crucial V.A.Duk, INR RAS

  23. K→µνh (νh→νγ): primary and secondary vertices τ=10-9 sec τ=10-10 sec τ=10-11 sec Zνh - ZK dz, cm dz, cm dz, cm τ=10-9 sec τ=10-11 sec τ=10-10 sec (Zνh – ZK)/(ZECAL – ZK) V.A.Duk, INR RAS

  24. K→µνh (νh→νγ): Eγ smearing dE = Etrue - Emeasured τ=10-11 sec τ=10-10 sec τ=10-9 sec dE, GeV dE, GeV dE, GeV V.A.Duk, INR RAS

  25. K→µνh (νh→νγ): kinematics in kaon rest frame assumed isotropic Pγ: kaon rest frame P*γ: νh rest frame θ – (γ-νh) angle general case * * νh ν μ kaon decay vertex γ cos θμγ ~ (-1) Eνh ~ 240 MeV , mνh ~ 40–80 MeV Eγ> 50 MeV peak sharper for smaller mh V.A.Duk, INR RAS

  26. K→µνh (νh→νγ) event selection: K→µνγ signature • Track requirements (one primary track, one secondary track, cuts on track quality) • Veto requirements (no signals above threshold) • Vertex requirements (400 < z < 1600 cm, cut on vertex fit probability) • Particle ID : Photon: isolated shower in ECAL Muon: 1) MIP in ECAL 2) ADC sum in HCAL < 200 3) relative energy deposition in last 3 layers of HCAL > 0.05 V.A.Duk, INR RAS

  27. K→µνγ : decay rate and kinematical variables 3 main terms: IB – dominant SD±, INT± - most interesting (→ Fv , FA) Kinematical variables: x=2*Eγ(cms)/Mky=2*Eµ(cms)/Mk x Dalits-plot IB y V.A.Duk, INR RAS

  28. K→µνh (νh→νγ): background rejection and signal observation • Main background: • K→ µ ν γ (Kµ2γ) • K→ µ ν π0 (Kµ3) with 1 gamma lost (from π0→γγ) • K→ π π0 (Kπ2) with 1 gamma lost (from π0→γγ) and π misidentification • Signal observation: peaks in y and cosθμγwhere θμγ is the angle between pµ and pγ in kaon rest frame. θμγ peaks at (-1) for signal Background rejection procedure: scanning over (y, x) Dalits-plot and looking for a peak in cosθμγ V.A.Duk, INR RAS

  29. K→µνh (νh→νγ): (y, x) Dalits plot signal (MC) Kµ2γ (MC) X X X data X Y Y Kπ2 (MC) Kµ3 (MC) X X Y main background: Kπ2 Y Y V.A.Duk, INR RAS

  30. K→µνh (νh→νγ): signal extraction • (y, x) dalits-plot is divided into stripes with Δx=0.05 width (x-stripes) • cut on y is put in each x-stripe: 1 < y < 1.2 • Simultaneous fit of y and cosθμγis done in x-stripes signal (MC) X 7 x-stripes selected for further analysis in the following region: 1 < y < 1.2 0.2 < x < 0.55 y V.A.Duk, INR RAS

  31. Possible signature for νh in x-stripes; |Uµh|2=0.01, m=60 MeV,τ=10-10 sec Stripe 1: 0.2 < x < 0.25 magenta: signal green: K→µνγ blue: Kμ3 red: Kπ2 cos θµγ Y Stripe 4: 0.35 < x < 0.4 peak sharper for large x cos θµγ Y Stripe 7: 0.5 < x < 0.55 Y cos θµγ V.A.Duk, INR RAS

  32. Possible signature for different masses of νh; |Uµh|2=0.01,τ=10-10 sec m=40 MeV m=80 MeV m=60 MeV cos θµγ cos θµγ cos θµγ peak sharper for small mh V.A.Duk, INR RAS

  33. Possible signature for different lifetimes of νh; |Uµh|2=0.01, m=60 MeV τ=10-11 sec τ=10-9 sec τ=10-10 sec cos θµγ cos θµγ cos θµγ peak sharper for large τh V.A.Duk, INR RAS

  34. Signal efficiency 2 effects mhτ(lab) because of Lorentz boost low efficiency for small mh τ=10-9 sec τ=10-10 sec mνh, MeV mνh, MeV τ=10-11 sec mh E(cms) cut on y (y>1) kills signal mνh, MeV V.A.Duk, INR RAS

  35. K→µνh (νh→νγ): simultaneous fit in x-stripes 0.4 < x < 0.45 fitting cosθμγ and y simultaneously is more reliable Y cos θµγ 0.3 < x < 0.35 Signal and background shapes taken from MC Y cos θµγ magenta – signal, green – Kμ2γ, blue – Kμ3, red – Kπ2 V.A.Duk, INR RAS

  36. |Uµh|2 calculation • BR(νh) measured from BR(νh)/BR(Kμ2γ) • BR(Kμ2) taken from PDG • BR(Kμ2γ) taken from theory • f(mh) contains chirality flip and phase space factors f(mh , mµ) f = 1.1 – 1.5 blue (chirality flip): 1+(mh/mμ)2 red (total): f(mh, mμ) mνh, GeV V.A.Duk, INR RAS

  37. |Uµh|2 calculation • |Uµh|2is calculated for each x-stripe • Nexp(νh)/ Nmc(νh) obtained from simultaneous fit • Values |Uµh|2 for x-stripes are averaged • Upper limit is set for averaged |Uµh|2 V.A.Duk, INR RAS

  38. Averaging |Uµh|2 |Uµh|2 |Uµh|2 X X 1σ interval m=50 MeV, τ=10-10 sec |Uµh|2= (6.6 ± 3.9)*10-6 V.A.Duk, INR RAS

  39. |Uµh|2 for τ=10-9 , 10-10 and 10-11 sec |Uµh|2 |Uµh|2 |Uµh|2 τ=10-9 τ=10-11 τ=10-10 mνh, MeV mνh, MeV mνh, MeV effect does not exceed 2σ V.A.Duk, INR RAS

  40. Main sources of systematics • Fit (shape) systematics • bin size in cos histogram • x-stripe width (bin size in the final fit) • Cut on x (number of x-stripes in the final fit) • Cut on y in x-stripes (study in progress) V.A.Duk, INR RAS

  41. Main sources of systematics • Fit (shape) systematics • bin size in cos histogram • x-stripe width (bin size in the final fit) • Cut on x (number of x-stripes in the final fit) • Cut on y in x-stripes (study in progress) V.A.Duk, INR RAS

  42. Fit (shape) systematics • MC shape is not perfect • Errors of simultaneous fit scaled to χ2=1 • New |Uµh|2 has larger error • Additional error is treated as shape systematics • Dominant source |Uµh|2= (0.9 ± 0.5)*10-5 |Uµh|2= (0.7 ± 0.8)*10-5 |Uµh|2 |Uµh|2 m = 80 MeV τ = 10-10 sec x x V.A.Duk, INR RAS

  43. Main sources of systematics • Fit (shape) systematics • bin size in cos histogram • x-stripe width (bin size in the final fit) • Cut on x (number of x-stripes in the final fit) • Cut on y in x-stripes (study in progress) V.A.Duk, INR RAS

  44. Bin size in simultaneous (cos histogram) and final (x-stripe width) fits • Varying bin size in cos histogram: results are compatible • Varying x-stripe width: results are compatible • No systematics found V.A.Duk, INR RAS

  45. Main sources of systematics • Fit (shape) systematics • bin size in cos histogram • x-stripe width (bin size in the final fit) • Cut on x (number of x-stripes in the final fit) • Cut on y in x-stripes (study in progress) V.A.Duk, INR RAS

  46. Systematics of a cut on x • Varying number of stripes in the final fit • Fitting dependency of |Uµh|2on x • slope multiplied by stripe width gives error estimation • εsyst < 0.2 εstat |Uµh|2 x-stripe number V.A.Duk, INR RAS

  47. Setting UL on |Uµh|2 upper line – total error bottom line – statistical error only UL (95% C.L.) UL (95% C.L.) UL (95% C.L.) τ=10-9 τ=10-11 τ=10-10 mνh, MeV mνh, MeV mνh, MeV V.A.Duk, INR RAS

  48. Comparison with Gninenko’s prediction |Uµh|2 |Uµh|2 |Uµh|2 mνh, MeV mνh, MeV mνh, MeV blue stripe: predictions from LSND, KARMEN. MiniBoonE Black line: ISTRA+ upper limit @ 95% C.L. V.A.Duk, INR RAS

  49. Preliminary results • |Uµh|2 < (4-6) x 10-5 (95% CL) for τ=10-9 sec • |Uµh|2 < (1-2) x 10-5 (95% CL) for τ=10-10 sec • |Uµh|2 < (1.5-2) x 10-5 (95% CL) for τ=10-11 sec • More detailed scan of (m, τ) and study of systematics is in progress V.A.Duk, INR RAS

  50. conclusions • Heavy sterile neutrino νh is proposed for LSND/KARMEN/MiniBoone anomaly explanation: 40 MeV < m(νh) < 80 MeV, 10-11 sec < τ(νh)< 10-9 sec, 10-3 < |Uμh|2< 10-2 • νh can be effectively searched for in kaon decay K→µνh (νh→νγ) • First preliminary limits on |Uµh|2 are obtained from K‾→ µ‾ ν γ decay at ISTRA+ setup: |Uµh|2 < (4-6) x 10-5 (95% CL) for τ=10-9 sec |Uµh|2 < (1-2) x 10-5 (95% CL) for τ=10-10 sec |Uµh|2 < (1.5-2) x 10-5 (95% CL) for τ=10-11 sec • more detailed study is in progress V.A.Duk, INR RAS

More Related