1 / 67

Genetics: Mendel and Beyond

Genetics: Mendel and Beyond. Genetics: Mendel and Beyond. By the end of this chapter you should be able to: Describe Mendel’s Experiments and the Laws of Inheritance Predict inheritance patterns of monohybrid and dihybrid crosses using a punnett square Explain examples of gene interactions

mostyn
Télécharger la présentation

Genetics: Mendel and Beyond

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Genetics: Mendel and Beyond

  2. Genetics: Mendel and Beyond By the end of this chapter you should be able to: • Describe Mendel’s Experiments and the Laws of Inheritance • Predict inheritance patterns of monohybrid and dihybrid crosses using a punnett square • Explain examples of gene interactions • Distinguish between genes and chromosomes • Explain sex determination and • Predict sex-linked inheritance

  3. The Foundations of Genetics • Applied genetics (plant and animal breeding) has been used for five thousand years ago or more. • The foundation for the science of genetics is credited to Gregor Mendel who used varieties of peas to conduct experiments on inheritance. • Mendel’s research was ignored until the turn of the twentieth century. • Meiosis provides an explanation for Mendel’s theory.

  4. The Foundations of Genetics • Plants have some desirable characteristics for genetic studies: • They can be grown in large quantities. • They produce large numbers of offspring. • They have relatively short generation times. • Many have both male and female reproductive organs, making self-fertilization possible. • It is easy to control which individuals mate.

  5. Figure 10.1 A Controlled Cross between Two Plants

  6. Mendel’s Experiments and the Laws of Inheritance • Mendel looked for characters that had well-defined alternative traits and that were true- breeding. • Mendel developed true-breeding strains to be used as the parental generation, designated P. • The offspring from the cross of the P parents are called the first filial generation, designated F1. • When F1 individuals are crossed to each other or self-fertilized, their progeny are designated F2.

  7. Mendel’s Experiments and the Laws of Inheritance • Mendel’s experiment 1: • A monohybrid cross involves one character (seed shape) and different traits (spherical or wrinkled). • SS x ss → Ss • The F1 seeds were all spherical; the wrinkled trait failed to appear at all. • Because the spherical trait completely masks the wrinkled trait when true-breeding plants are crossed, the spherical trait is considered dominant and the wrinkled trait recessive. We represent the dominant trait with a capital letter and the recessive trait with a small case letter.

  8. Mendel’s Experiments and the Laws of Inheritance • Mendel’s experiment 1 continued: • The F1 generation was allowed to self-pollinate to produce F2 seeds. • Ss x Ss → 3Ss, 1 ss • 3 are heterozyous smooth and 1 is homozygous wrinked. • In the F2 generation, the ratio of spherical seeds to wrinkled seeds was 3:1.

  9. Figure 10. 3 Mendel’s Experiment 1 (Part 1)

  10. Figure 10. 3 Mendel’s Experiment 1 (Part 2)

  11. Mendel’s Experiments and the Laws of Inheritance • From these results, Mendel reached several conclusions: • The units responsible for inheritance are discrete particles that exist in pairs and separate during gamete formation; this is called the particulate theory. • Each pea has two units of inheritance for each character. • During production of gametes, only one of the pair for a given character passes to the gamete. • When fertilization occurs, the zygote gets one unit from each parent, restoring the pair.

  12. Mendel’s Experiments and the Laws of Inheritance • Mendel’s units of inheritance are called genes (a portion of the chromosomal DNA that resides at a specific locus and codes for a particular function); different forms of a gene are called alleles. • True-breeding individuals have two copies of the same allele (i.e., they are homozygous). • Some smooth-seeded plants are Ss or heterozygous. • The physical appearance of an organism is its phenotype (what it looks like); the actual composition of the organism’s alleles for a gene is its genotype. Homozygous dominant; heterozygous dominant; homozygous recessive

  13. An organism’s trait does not always reveal its genetic composition. Why? • Heterozygous genotypes yield phenotypes showing the dominant trait. • The same phenotype can result from different genotypes.

  14. Mendel’s Experiments and the Laws of Inheritance • Mendel’s first law is called the law of segregation: The two alleles of a trait segregate (separate) during meiosis. • Each gamete receives one member of a pair of alleles. • Determination of possible allelic combinations can be accomplished by a Punnett square.

  15. Punnett Square • Another way to demonstrate this is through the use of a punnett square S S S s s Ss Ss S SS Ss s Ss Ss s Ss ss • Since one character with two contrasting traits are being crossed, this is called a monohybrid cross

  16. Figure 10.4 Mendel’s Explanation of Experiment 1

  17. Figure 10.5 Meiosis Accounts for the Segregation of Alleles (Part 1)

  18. Figure 10.5 Meiosis Accounts for the Segregation of Alleles (Part 2)

  19. Mendel’s Experiments and Laws of Inheritance • How do we determine if a purple flowering plant is SS or Ss? • We could cross the purple flowering plant of unknown genotype with a true breeding purple flowering plant or a white flowering plant • SS x SS (unknown) or SS x Ss (unknown) all spherical all spherical • ss x SS (unknown) or ss x Ss (unknown) all spherical 2 spherical: 2 wrinkled

  20. Mendel’s Experiments and the Laws of Inheritance • Crossing an unknown with a homozygous recessive is called a test cross. • An individual with a dominant trait is crossed with a true-breeding recessive (homozygous recessive). • The appearance of the recessive phenotype in half the offspring indicates that the parent is heterozygous.

  21. Figure 10.6 Homozygous or Heterozygous?

  22. Mendel’s Experiments and the Laws of Inheritance • Mendel’s second law, the law of independent assortment, states that alleles of different genes assort into gametes independently. • This can be shown by using a dihybrid crosses. • For example, in pea plants purple flowers are dominant over white flowers and green pods are dominant over yellow pods. • Cross a purebreeding purple flowering plant with green pods with a white flowering plant with yellow pods. • Random fertilization of gametes results in all heterozygous offspring.

  23. Dihybrid Crosses • PPGG x ppgg = PpGg • If we allow these plants to self-pollinate, PpGg x PpGg, what are the possible offspring? • Each parent could produce four different gametes – PG, Pg, pG, or pg

  24. Dihybrid Crosses PG Pg pG pg PG Pg pG pg

  25. Dihybrid Crosses PG Pg pG pg PG PPGG PPGg PpGG PpGg Pg PPGg PPgg PpGg Ppgg pG PpGG PpGg ppGG ppGg pg PpGg Ppgg ppGg ppgg • Putting these into a punnett square results in a 9:3:3:1 ratio

  26. Figure 10.7 Independent Assortment

  27. Mendel’s Experiments and the Laws of Inheritance • Humans cannot be studied using planned crosses. • Therefore, human geneticists rely on pedigrees. • Human pedigrees do not show clear proportions. • Outcomes for small samples fail to follow the expected outcomes closely.

  28. Mendel’s Experiments and the Laws of Inheritance • If neither parent has a given phenotype, but it shows up in their offspring, the trait is recessive and the parents are heterozygous. • Half of the children from such a cross will be carriers (heterozygous for the trait). • The chance of any one child’s getting the trait is 1/4.

  29. Figure 10.11 Recessive Inheritance

  30. Mendel’s Experiments and the Laws of Inheritance • A pedigree analysis of the dominant allele for Huntington’s disease shows that: • Every affected person has an affected parent. • About half of the offspring of an affected person are also affected (assuming only one parent is affected). • The phenotype occurs equally in both sexes.

  31. Figure 10.10 Pedigree Analysis and Dominant Inheritance

  32. Polydactyl

  33. Figure 10.11 figure 10-11.jpg Figure 10.11

  34. Albinism

  35. Huntington’s Disease

  36. Marfan’s

  37. Marfan’s

  38. Alleles and Their Interactions • Differences in alleles of genes consist of slight differences in the DNA sequence at the same locus, resulting in slightly different protein products. • This is a mutation. Alleles can mutate randomly.

  39. Alleles and Their Interactions • A population can have more than two alleles for a given gene. • In rabbits, coat color is determined by one gene with four different alleles. Five different colors result from the combinations of these alleles. • Even if more than two alleles exist in a population, any individual can have no more than two of them: one from the mother and one from the father. • Also send in ABO blood typing.

  40. Figure 10.12 Inheritance of Coat Color in Rabbits

  41. Alleles and Their Interactions • A white snapdragon crossed with a red snapdragon, gives an intermediate phenotype – pink • Incomplete Dominance • In the case of snapdragons, one allele codes for an enzyme that leads to the formation of red pigment. The other allele does not code for pigment production.

  42. Figure 10.13 Incomplete Dominance Follows Mendel’s Laws

  43. The F2 offspring, however, demonstrate Mendelian genetics. For self-fertilizing F1 pink flowers the F2 progeny have a phenotypic ratio of 1 red:2 pink:1 white. • Other examples include roan cattle and blue Andalusian chickens • Tay Sachs Disease is also an example of incomplete dominance.

  44. Incomplete Dominance • Persons with Tay Sachs lack a crucial enzyme to metabolize a type of lipid. The lipids accumulate in the brain interfering with normal function. Causes regression of nervous system, - blind, deaf, bedridden, inability to move limbs • Cherry red spot in retina is one indication • Heterozygotes have an intermediate level of the lipid metabolizing enzyme

  45. Tay Sachs

  46. Tay Sachs

  47. Alleles and Their Interactions • In codominance, the two different alleles are both expressed in the heterozygotes. • In the human ABO blood group system the alleles for blood type are IA, IB, and IO. We inherit two of these three alleles. • Two IA, or IA and IO, results in type A. • Two IB, or IB and IO, results in type B. • Two IO results in type O. • IA and IB results in type AB. The alleles are called codominant.

  48. Figure 10.14 ABO Blood Reactions Are Important in Transfusions

  49. ABO Genetic Problems • A couple have their blood typed before marriage. They both are AB. What types of blood might their children have? Explain • A woman sues a man for child support. She has type A blood, her child type O, and the man type B. Could the man be the father? Why or why not?

  50. ABO Genetic Problems • A wealthy, elderly couple die together in a car accident. Soon a young man shows up to claim their fortune, contending that he is their only son who ran away from home when he was a young man. Other relative dispute his claim. Hospital records show that the deceased couple were blood types AB and O. The claimant is type O. Do you think the claimant is an impostor? Explain.

More Related