1 / 8

Understanding Trigonometric Functions and Their Periodicity in Signal Analysis

This document explores the characteristics of various trigonometric functions including sine, cosine, and tangent within the context of periodic signals. It examines the reflections, amplitudes, and periods of these functions, highlighting their specific mathematical transformations. Additionally, concepts such as cotangent, cosecant, and secant functions are discussed in terms of their periodicity and real-world applications in signal processing. Understanding these principles is crucial for analyzing waveforms and oscillations in physics and engineering.

myra-chaney
Télécharger la présentation

Understanding Trigonometric Functions and Their Periodicity in Signal Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1. y = –csc4 “Amp” = 1 Per = Reflected!

  2. 2. y = 3cot – 4 “Amp” = 3 Per =  VS 4 y = -4

  3. 3. y = ½ sec + 2 “Amp” = ½ Per = 2 VS 2 y = 2

  4. 4. y = –tan “Amp” = 1 Per = Reflected!

  5. 5. y = csc “Amp” = 1 Per = 2 P.S. =

  6. 6. y = 2cot( + 2) “Amp” = 2 Per =  P.S. = -2

  7. 7. y = sec “Amp” = 1 Per = 4 P.S. = 

  8. 8. y = tan + 4 “Amp” = Per = 3 V.S. 4 y = 4

More Related