290 likes | 417 Vues
This outline summarizes key concepts from Chapter 16 of "Elements of 3D Seismology" by Chris Liner, focusing on Normal Moveout (NMO). It covers definitions, the importance of correct velocity selection, and the implications of overcorrected and undercorrected NMO. Additionally, it explains the effects of NMO stretching on seismic data, including linear strain calculations and the role of stacking in enhancing signal-to-noise ratios through Semblance Analysis. This material provides crucial insights for interpreting seismic data effectively.
E N D
Making CMP’s From chapter 16 “Elements of 3D Seismology” by Chris Liner
Outline • Normal Moveout • Stacking
Normal Moveout Hyperbola: x T
Normal Moveout x T “Overcorrected” Normal Moveout is too large Chosenvelocity for NMO is too (a) large (b) small
Normal Moveout x T “Overcorrected” Normal Moveout is too large Chosenvelocity for NMO is too (a)large (b) small
Normal Moveout x T “Under corrected” Normal Moveout is too small Chosenvelocity for NMO is (a) too large (b) too small
Normal Moveout x T “Under corrected” Normal Moveout is too small Chosenvelocity for NMO is (a) too large (b) too small
Vinterval from Vrms Dix, 1955
Vrms V1 V2 Vrms < Vinterval V3
Multiples and Primaries x M1 T M2
Conventional NMO before stacking x M1 NMO correction V=V(depth) e.g., V=mz + B T M2 “Properly corrected” Normal Moveout is just right Chosenvelocity for NMO is correct
Over-correction (e.g. 80% Vnmo) x x M1 M1 NMO correction V=V(depth) e.g., V=0.8(mz + B) T T M2 M2
f-k filtering before stacking (Ryu) x x M1 NMO correction V=V(depth) e.g., V=0.8(mz + B) T T M2 M2
Correct back to 100% NMO x x M1 M1 NMO correction V=V(depth) e.g., V=(mz + B) T T M2 M2
Outline • Convolution and Deconvolution • Normal Moveout • Stacking
NMO stretching T0 V1 V2 “NMO Stretching”
NMO stretching V1 T0 V2 “NMO Stretching” V1<V2
NMO stretching V1 V1<V2 NMO “stretch” = “linear strain” V2 Linear strain (%) = final length-original length original length X 100 (%)
NMO stretching original length = final length = V1 V1<V2 V2 X 100 (%) NMO “stretch” = X 100 (%)
stretching for T=2s,V1=V2=1500 m/s Green line assumes V1=V2 Blue line is for general case, where V1, V2 can be different and delT0=0.1s (this case: V1=V2) Matlab code X 100 (%)
Stacking + + =
Semblance Analysis X + + = Twtt (s) “Semblance”
Semblance Analysis X V + + = V1 V2 Twtt (s) V3 Peak energy