380 likes | 801 Vues
第三章 运动的守恒定律. 研究对象: 质点系统 ;系统的过程问题,确立和认识运动的 守恒定律:能量守恒、动量守恒、角动量守恒. 重力. 保守力. 弹性力. 万有引力. §3-1 保守力 成对力作功 势能. 1 、 保守力 ( conservative force ) 功的大小只与物体的 始末位置 有关,而与所经历的路径无关,这类力叫 保守力 。. 非保守力:作功与物体运动路径有关的力,如摩擦力、爆炸力。. 保守力沿闭合路径一周所做的功为零 。这一结论也可以作为保守力的定义,它和保守力的功与路径无关的定义是完全等价的。. f 2. f 1 = -f 2. 1.
E N D
第三章 运动的守恒定律 研究对象:质点系统;系统的过程问题,确立和认识运动的 守恒定律:能量守恒、动量守恒、角动量守恒
重力 保守力 弹性力 万有引力 §3-1 保守力 成对力作功 势能 1、保守力(conservative force ) 功的大小只与物体的始末位置有关,而与所经历的路径无关,这类力叫保守力。 非保守力:作功与物体运动路径有关的力,如摩擦力、爆炸力。
保守力沿闭合路径一周所做的功为零。这一结论也可以作为保守力的定义,它和保守力的功与路径无关的定义是完全等价的。保守力沿闭合路径一周所做的功为零。这一结论也可以作为保守力的定义,它和保守力的功与路径无关的定义是完全等价的。
f2 f1=-f2 1 2 一对力 2、成对力的功 根据力的相互作用的性质,不管是保守力还是非保守力,力总是成对出现。 分别作用在两个问题上的大小相等、方向相反的力为“一对力” 一对力通常是作用力与反作用力,但也可以不是。如图示的 f1与f2就不是作用力与反作用力,但仍是一对力。另外,一对力中的两个力也并不要求必须在同一直线上。
成对力的功 • 任何一对作用力和反作用力所作的总功具有与参考系选择无关的不变性质。 • 在任意的参考系中,成对保守力的功只取决于相互作用质点的始末相对位置,而与各质点的运动路径无关。这是保守力的普遍定义。
3、势能(potential energy) • 利用保守力的功与路径无关的特点,可引入“势能” 的概念。 如果一个物体系内物体之间存在着保守力,则称之为保守内力。 • 具有保守内力的系统中,由各物体之间的相对位置所决定的能量叫做该系统的势能。 势能的种类很多,如引力势能、弹性势能、电势能、分子势能等。
重力势能: 弹性势能: 引力势能: 在SI制中,势能和功具有相同的的单位:焦耳(J)
保守力的功与路径无关的性质,大大简化了保守力作功的计算。引入势能概念以后,保守力的功可以简单地写成:保守力的功与路径无关的性质,大大简化了保守力作功的计算。引入势能概念以后,保守力的功可以简单地写成: (3-7) 系统在由位置a改变到位置b的过程中,成对保守内力的功等于系统势能的减少(或势能增量的负值)。
势能差 绝对性 相对性 势能量值 说明:1、势能的引入是以保守力作功为前提的。对于非保守力,不存在势能的概念; 2、势能属于相互作用的系统;(只有零点势能选定后,某一位置的势能值才能确定,此值等于从该位置移动到势能零点时保守力所作的功。) 3、势能的量值只具有相对意义; 3、由于成对保守力作功与参考系的选择无关,故势能差具有绝对意义;
4、势能曲线 ——势能和相对位置的关系曲线
当系统内的物体在保守力 F 作用下,沿 x 轴发生位移 dx 时,保守力所作的功是: • 根据势能曲线的形状可以讨论物体的运动。 • 利用势能曲线还可以判断物体在各个位置所受的保守力的大小和方向。 保守力的功等于势能增量的负值: 写成微分形式: (3-8) 比较上面两式,得:
(3-8) • 保守力沿某坐标轴的分量等于势能对此坐标轴的导数的负值。 • 势能曲线上某点斜率的负值,就是该点对应的位置处质点所受的保守力。
§3-2 功能原理(work-energy theorem) 1、质点系(system of particles)统动能定理 系统的外力(external frce)和内力(internal force)作功的总和等于系统动能的增量 (3-9) 质点系统动能定理
保守内力 系统内力 非保守内力 2、系统的功能原理 系统的功能原理 当系统从状态1变化到状态2时,它的机械能的增量等于外力的功与非保守内力的功总和。
讨论:1、取物体为研究对象时,使用的是单个物体的动能定理,外力所作的功,指的是作用在物体上的所有外力所作的总功。讨论:1、取物体为研究对象时,使用的是单个物体的动能定理,外力所作的功,指的是作用在物体上的所有外力所作的总功。 2、取系统为研究对象时,保守内力所作的功(Aic)被系统势能的变化(Ep)所取代,因此在计算中,如果计算了 保守内力所作的功,就不必再去考虑势能的变化;反之,考虑了势能的变化,就不必在计算保守内力的功。
3、存在机械运动之外的其它运动形式时,系统的能量应该是机械能和其它形式的能量总和。(如热能、原子能等)3、存在机械运动之外的其它运动形式时,系统的能量应该是机械能和其它形式的能量总和。(如热能、原子能等) 如果不考虑系统和外界热交换的情形,并假定对系统的作用,只是作用在这系统上的外力的功,则外力对系统所作的总功,就等于系统总能量的增量。 4、当 时, 此时,非保守内力作的总功将引起系统机械能的改变。 系统内部由其它形式的能量转换成机械能 系统内部机械能转变为其它形式的非保守内能。
由功能原理 ,当 时, §3-3 机械能守恒定律 能量守恒定律 1、机械能守恒定律 如果一个系统内只有保守力作功,其他内力和一切外力都不作功,或者它们的总功为零,则系统内各物体的动能和势能可以互相转换,但机械能的总值不变,这个结论叫做机械能守恒定律。 分析弹簧振子模型
2、能量守恒定律 孤立系统:一个不受外界作用的系统。 一个孤立系统经历任何变化时,该系统的所有能量的总和是不变的,能量只能从一种形式变化为另一种形式,或从系统内一个物体传给另一个物体,这就是能量守恒定律,它是物理学中具有最大普遍性的定律之一。
§3-4 质心 质心运动定理 动量守恒定 律 火箭飞行 1、质心(center of mass) 质心实际上是与质点系统质量分布有关的一个代表点,它的位置在平均意义上代表着质量分布的中心。 分别表示系统中第i个质点的质量和位矢, 表示质心的位矢,则质心位置的三个直角坐标被定义为:
为质点系统的总质量。 式中 上式的矢量式为: 如果质点系统为质量连续分布的物体,求质心时需要把求和改为积分:
如果质点系统为质量连续分布的物体,求质心时需要把求和改为积分:如果质点系统为质量连续分布的物体,求质心时需要把求和改为积分: 则质心位置的三个直角坐标应为:
质心和重心是两个不同的概念,不能混为一谈.质心和重心是两个不同的概念,不能混为一谈. 一个物体的质心, 是物体运动中由其质量分布决定的一个特殊的点。 对于一个有一定形状和大小的自由物体,如原来为静止,当外力的作用线通过其质心时,物体只作平动,而没有转动。就这一情形而言,物体的质量好像集中在质心上。 重心是地球对物体各部分引力的合力(即重力)的作用点。
2、质心运动定理(theorem of motion of center - of – mass) 设有一个质点系,由n个质点组成,它的质点的位矢是 由此求得质心的速度和加速度分别为 (3-16) (3-17)
表示系统外的物体对各个质点的作用力 表示系统内各个质点之间的相互作用力,即内力 根据牛顿第二定律,系统中各个质点的运动方程为:
根据牛顿第三定律,内力在系统内总是成对出现的,它们之间满足根据牛顿第三定律,内力在系统内总是成对出现的,它们之间满足 因此,把上列各式相加后,即得 或者写成 质心运动定理 因此,质心加速度可以写成 (3-18) 或者
质心运动定理告诉我们:不管物体的质量如何分布,也不管外力作用在物体的什么位置上,质心的运动就象是物体的全部质量都集中于此,而且所有外力也都集中作用其上的一个质点的运动一样。质心运动定理告诉我们:不管物体的质量如何分布,也不管外力作用在物体的什么位置上,质心的运动就象是物体的全部质量都集中于此,而且所有外力也都集中作用其上的一个质点的运动一样。
如果 在 式中, 3、动量守恒定律(conservation law of momentum) 那么系统质心加速度 由 ,这意味着质心的速度 保持不变, 亦即质心将以速度 作匀速直线运动,有下式成立: 动量守恒定律 或者 时
时 如果系统所受到的外力之和为零,则系统的总动量保持不变。这各结论叫做动量守恒定律。 不难看出: 系统的动量不变 质心保持匀速直线运动状 如果系统内所受的外力满足条件 或在极短促的时间内,系统所受的外力远比系统内相互作用的内力为小(如碰撞过程)而可以忽略不计时,就可以应用动量守恒定律来处理问题。
动量守恒定律的分量表达式: 说明:如果系统的外力之和并不为零,但外力在某一方向上的分量之和为零,在这种情形下,尽管系统的总动量不守恒,当总动量在该方向上的分量却是守恒的。
§3-5 碰 撞 • 如果两个或几个物体在相遇中,物体之间的相互作用仅持续一个极为短暂的时间,这些现象就是碰撞。 球的碰撞、打桩、锻铁; 分子、原子、原子核等微观粒子的相互作用 • 在研究碰撞问题时,常将相互碰撞的物体作为一系统来考虑,系统内仅有内力的相互作用,所以这一系统应该遵从动量守恒定律。
(完全)弹 性 碰 撞 碰 撞 完全非弹性碰撞 按照碰撞过程中系统的机械能是否守恒 非 弹 性 碰 撞 一般非弹性碰撞 正碰 斜碰 碰撞的分类
大小为 §3-6 质点的角动量和角动量守恒定律 • 1、角动量(angular momentum of a particle) • 质点相对于空间某一定点的运动时,可以用角动量来描述物体的运动状态。 方向:与 r 和 p 满足右手螺旋关系
角动量的表达式 力矩的表达式 角动量可以看作动量对给定点的矩,所以有时也把角动量叫做动量矩。 角动量的单位是:kg ·m2/s
2、角动量守恒定律(law of conservation of angular momentum) 在研究物体的转动时,角动量将代替动量而起重要作用。 (1)实验总结得到
将 两边求t导数得: 其中 因此 所以 (2)由牛顿第二定律推导 由牛顿第二定律,知道 所以 是力矩的定义
是力矩(moment of force)的定义 在外力矩作用下,质点的角动量将随时间而变化。 如果作用在质点上的外力对某给定点O的力矩(rF)为零,则质点对O的角动量(L)在运动过程中保持不变。这叫做质点的角动量守恒。