1 / 24

12.3 DNA Replication

12.3 DNA Replication . How Does DNA Copy Itself?. DNA Replication – What and Why. Replication = DNA making copies of itself DNA must be copied before a cell can divide Each new cell will have a complete set of DNA. History of Replication. Watson & Crick – realized that

nau
Télécharger la présentation

12.3 DNA Replication

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 12.3 DNA Replication How Does DNA Copy Itself?

  2. DNA Replication – What and Why • Replication = DNA making copies of itself • DNA must be copied before a cell can divide • Each new cell will have a complete set of DNA

  3. History of Replication • Watson & Crick – realized that complementary base pairing provided a way for DNA to copy itself - base pairing could allow a new strand to be built on an old strand - 3 possible models of DNA replication

  4. 3 Models of Replication: Semi-conservative Replication • Each strand in a DNA molecule is used as a template to build a new strand using complementary base pairing • Results in new molecule with one original DNA strand and one new strand

  5. 3 Models of Replication: Conservative Replication • Leaves the original DNA intact and produces another molecule of DNA identical to the first

  6. 3 Models of Replication: Dispersive Replication • Creates two molecules that are a mix of new and old DNA interspersed along each strand of the molecule

  7. The Question is Answered • 1957 Matthew Meselson & Franklin Stahl -conducted an experiment proving replication is semiconservative - each DNA molecule has one new strand and one old strand

  8. DNA Replication: Process • @Replication begins when the enzyme DNA helicaseopens the DNA forming replication bubbles@

  9. DNA Replication: Process • Multiple replication bubbles are opened simultaneously allows the molecule to be replicated quickly

  10. DNA Replication: Process • The nitrogen bases on the original DNA strands are exposed in the replication bubbles. • They serve as a template to build new DNA strands

  11. DNA Replication • The ends of the replication bubbles known as the replication fork is where replication begins

  12. DNA Replication – DNA Polymerase • @The enzyme DNA polymerase brings new nucleotides to the replication fork@ - it pairs them according to base pairing rules A pairs with T C pairs with G

  13. DNA Replication – Leading Strand • The process of replication proceeds from 5’ to 3’ • leading strand- replication is continuous – it is built toward the replication fork

  14. DNA Replication – Lagging Strand • lagging strand- replication occurs in short segments - called Okazaki fragments - the new DNA strand grows away from the replication fork

  15. DNA Replication- The Big Picture Each Bubble has 2 Forks – each fork has a leading and lagging strand

  16. DNA Replication • The process continues until 2 complete copies of the DNA are produced • @Each copy of the DNA has 1 strand of DNA from the original DNA and one new strand that was produced by replication@ • Known as semi-conservativereplication

  17. DNA Replication

  18. DNA Replication http://highered.mcgraw-hill.com/sites/9834092339/student_view0/chapter14/dna_replication.html

  19. Telomeres • The tips of chromosomes are known as telomeres. • Over time, DNA may actually be lost from telomeres each time a chromosome is replicated. • @An enzyme, telomerase, solves this problem by adding short, repeated DNA sequences to telomeres@

  20. Prokaryotes vs. Eukaryotes • Prokaryotes- starts from a single point and goes in two directions until the entire chromosome is copied. • Eukaryotes- replication begins at dozens or even hundreds of spots on the DNA, going in both directions until each chromosome is completely copied.

  21. Which enzyme is used to separate the DNA? • Helicase • Ligase • Polymerase • Telomerase

  22. Which enzyme adds nucleotides to the strands? • Helicase • Ligase • Polymerase • Telomerase

  23. Which enzyme prevents DNA from being lost during replication? • Helicase • Ligase • Polymerase • Telomerase

  24. How is Prokaryotic DNA different from Eukaryotic? • Prokaryotic DNA is circular and replication begins at 1 point. • Eukaryotic DNA is linear and replication begins at many points.

More Related