1 / 11

Enthalpy Changes

Enthalpy Changes. Measuring and Expressing ∆H Calorimetry. When you complete this presentation, you will be able to Define enthalpy Define calorimetry Describe how to use a “coffee cup” calorimeter to determine the change in enthalpy of a reaction and the specific heat of a material.

nemo
Télécharger la présentation

Enthalpy Changes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Enthalpy Changes Measuring and Expressing ∆H Calorimetry

  2. When you complete this presentation, you will be able to • Define enthalpy • Define calorimetry • Describe how to use a “coffee cup” calorimeter to determine the change in enthalpy of a reaction and the specific heat of a material. • Describe the parts of a bomb calorimeter Objectives

  3. We have been introduced to heat producing (exothermic) reactions and heat using (endothermic) reactions. • Heat is a measure of the transfer of energyfrom a system to the surroundings and from the surroundings to a system. • The change in heat of a system is called the change in enthalpy(ΔH) when the pressure of the system in kept constant. Introduction

  4. We measure the transfer of heat (at a constant pressure) by a technique called calorimetry. • In calorimetry ... • the heat released by the system is equal to the heat absorbed by its surroundings. • the heat absorbed by the system is equal to the heat released by its surroundings. • The total heat of the system and the surroundings remains constant. Calorimetry

  5. We use an insulated device called a calorimeterto measure this heat transfer. • A typical device is a “coffee cup”calorimeter. Calorimetry

  6. To measure ΔH for a reaction ... • dissolve the reacting chemicals in known volumes of water • measure the initial temperatures of the solutions • mix the solutions • measure the final temperature of the mixed solution Calorimetry

  7. The heat generated by the reactantsis absorbed by the water. • We know the mass of the water, mwater. • We know the change in temperature, ∆Twater. • We also know that water has a specific heat of Cwater= 4.18 J/°C-g. • We can calculate the heat of reaction by: qsys= ∆H = −qsurr = −mwater× Cwater × ∆Twater Calorimetry

  8. When 25.0 mL of water containing 0.025 mol of HCl at 25.0°C is added to 25.0 mL of water containing 0.025 mol of NaOH at 25.0°C in a coffee cup calorimeter, a reaction occurs. Calculate ∆H (in kJ) during this reaction if the highest temperature observed is 32.0°C. Assume the densities of the solutions are ρ = 1.00 g/mL. Vfinal= VHCl + VNaOH = (25.0 + 25.0) mL = 50.0 mL ρwater= 1.00 g/mL ∆Twater = Tfinal − Tinitial = 32.0°C − 25.0°C = +7.0°C Cwater= 4.18 J/°C-g mwater= Vfinal × ρwater= (50.0 mL)(1.00 g/mL) = 50.0 g ∆H = −m × C × ∆T = −(50.0 g)(4.18 J/°C-g)(+7.0°C) ∆H = −1463 J = −1.5×103 J = −1.5 kJ Calorimetry

  9. We can also do calorimetry at a constant volumerather than at a constant pressure. • This is called “bomb”calorimetry. • A sample is placed in the crucible. • Oxygen is introduced into the chamber. • The lid is tightened and the chamber is placed in a water bath. • The ignition coil ignites the sample. • The heat generated in the chamber is transferred to the water. • The change in temperature is then measured on the thermometer. Calorimetry

  10. Heat is a measure of the transfer of energy from a system to the surroundings and from the surroundings to a system. • The change in heat of a system is called the change in enthalpy (ΔH) when the pressure of the system in kept constant. • We measure the transfer of heat (at a constant pressure) by a technique called calorimetry. • We use an insulated device called a calorimeter to measure this heat transfer. Summary

  11. Two calorimeters used are ... • the coffee cup calorimeter (for constant pressure measurements) • the bomb calorimeter (for constant volume measurements) Summary

More Related