1 / 46

Mauro Rajteri Divisione OTTICA

Panoramica INRIM. Rivelare i fotoni e la loro statistica con i Transition-Edge Sensors (TESs). Mauro Rajteri Divisione OTTICA. Mauro Rajteri, 12/06/2013 Panoramica INRIM. Introduction.

nenet
Télécharger la présentation

Mauro Rajteri Divisione OTTICA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Panoramica INRIM Rivelare i fotoni e la loro statistica con i Transition-Edge Sensors (TESs) Mauro Rajteri Divisione OTTICA Mauro Rajteri, 12/06/2013 Panoramica INRIM

  2. Introduction Photon: also called Light Quantum, minute energy packet of electromagnetic radiation. The concept originated (1905) in Einstein’s explanation of the photoelectric effect (enc. Brittanica) Photon counting: average count rate  intensity of the light beam but actual count rate fluctuates from measurement to measurement.

  3. Photon statistics Coherent light & constant intensity: 3.1

  4. Poissonian statistics

  5. Poissonian statistics

  6. Single Photon detectors "Classical" Single photon detector  Photon source Photon number resolving (PNR) detector

  7. Ibias Transition-Edge Sensors (TESs) TES:a superconducting film operated in the temperature region between the normal and the superconducting state DTc~ 1 mKhigh sensitivethermometer t (s) R Ites WorkigPoint I T Tc ~ 100 mK Rbias<< Rtes DT DR @ Voltage bias  DI

  8. Ibias Transition-Edge Sensors (TESs) TES:a superconducting film operated in the temperature region between the normal and the superconducting state DTc~ 1 mKhigh sensitivethermometer t (s) R 1ph Ites WorkigPoint I T Tc ~ 100 mK Rbias<< Rtes DT DR @ Voltage bias  DI

  9. Ibias t (s) I Transition-Edge Sensors (TESs) TES:a superconducting film operated in the temperature region between the normal and the superconducting state DTc~ 1 mKhigh sensitivethermometer 2 phs Ites Working Point T Rbias<< Rtes DT DR @ Voltage bias  DI R Tc ~ 100 mK

  10. 10 µm X10 µm 20 µm X 20 µm Transition-Edge Sensors (TESs) Bilayer – proximity effect Ti=24 nm, Au=54 nm Tc =121 mK ∆Tc = 2 mK Rn = 0.220 Ω

  11. Superconductor - e Superconductor - ph Pinc Pe Substrate Te ge-ph Ps Thermal bath Tph gph-sub Tsub gsub-b Tb TES: thermal model g= thermal conductance K = constant: material and geometry dependent n = constant: depends on the dominant thermal coupling mechanism For T < 1K  electron-phonon decoupling n  5

  12. Effective TES response time TES: theory Intrinsic Energy Resolution ∆EFWHMis proportional to the operating temperature Tc etfis lower than th if /n >1

  13. TES: optical alignment 2w 2w0 Gaussianbeam: w0=4.7/5.6mm@l=1.3/1.55mm 2w~19÷ 25 mm z~ 125 m acc~ 58% @1.55mm÷ 80% @1.3mm 0,5 mm (TES 20 x 20 mm) Silicon V-groove with fiber array 5 mm 1,5 mm 1,5 mm 0,5 mm 0.8 mm 0,5 mm back off Cu bracket 0,25 0,25 3 mm Silicon 1mm

  14. 2 layers 2 layers R(1550)=0.018% Substrate Substrate Substrate Substrate TES: optical losses • Optical coupling fiber-TES • Reflection and transmission of superconducting film  Antireflection coating or optical cavity a-Si3N4:Hy (low reflection index) a-SiH (high reflection index)

  15. TES: photon counting Laser Electronics & data aquisition DITES Optical fiber Attenuator INRIM: TES module SQUID current sensors (PTB)

  16. TES: photon counting

  17. TES: photon counting

  18. TES: pulse analysis Noisy: ΔE = 0.46 eV Wiener filter: 2x improvement on E 1 (a) 2 3 4 5 Wiener: ΔE = 0.22 eV (b) D. Alberto, et al, Optical Transition-Edge Sensors Single Photon Pulse Analysis, IEEE Trans. Appl. Supercond., 21 , 285 – 288 (2011)

  19. TES: photon counting

  20. TES: photon counting phs 20X20 μm2 =1570 nm L. Lolli, et al. J. Low Temp. Phys., vol. 167, pp. 803-808, 2012.

  21. Absolute C O U N T E R Q u a n t u m E f f i c i e n c y C O U N T E R TES: QE absolute calibration Klyshko Detector to be Calibrated w s N1 NC C O I N C N C O U N T E R w p N2 P A R A M E T R I C w C R Y S T A L i Drawback: Klyshko's technique is not able to exploit the PNR ability of the detector Proposal and demonstration of an absolute technique for measuring quantum efficiency, based on an heralded single photon source, but exploiting the PNR ability of the detector “Herald” Detector A. Avella et al OPTICS EXPRESS 2011 19 p. 23249-23257

  22. TES: QE absolute calibration Probability of observing i photons per heralding count in the presence of the heralded photon Probability of observing i photons per heralding count in the absence of the heralded photon (i.e. of observing i “accidental” counts) The probability of observing 0 photons per heralding count : False her.& No accidental Non detection & No accidental “Total” Quantum Efficiency of the PNR detector optical and coupling losses  detector proper Quantum Efficiency  Probability of having a True Heralding Count (not due to stray-light or dark counts)

  23. TES: QE absolute calibration The probability of observing i photons per heralding count From each a value of “Total” Quantum Efficiency can be estimated  Consistency Test From the probability of 0 From the probability of i Hpof the Klyshko’s Technique: multiphoton PDC events negligible

  24. TES: QE absolute calibration IF1 DET1 NLC HWP PDC single photon source Pump source TES detection system IF2 b a

  25. TES: QE absolute calibration PUMP total quantum efficiency DET1 6 Repeated measurements each 5 hr. long >5 106counts Heralded Accidental @ 807 nm prob. of true heralding counts

  26. TES: POVM tomography POVM provides the description of the measurement process “n” Prob. of output “n”

  27. TES: POVM tomography POVM provides the description of the measurement process “n” Prob. of output “n”

  28. TES: POVM tomography POVM provides the description of the measurement process “n” Prob. of output “n” : Prob. of having output “n” with m photons as input

  29. TES: POVM tomography Simplest Solution: Fock state source

  30. TES: POVM tomography Simplest Solution: Fock state source

  31. TES: POVM tomography Simplest Solution: Fock state source Affordable Solution: Coherent source [Lundeen et al., Nat. Phys 5, 27 (2009)]

  32. TES: POVM tomography Coherent source Pulsed laser source Experiment with a TES 1570 nm

  33. TES: POVM tomography Coherent source Pulsed laser source Experiment with a TES

  34. TES: POVM tomography Coherent source Pulsed laser source Experiment with a TES

  35. TES: POVM tomography Coherent source Linear detection model   =5.1% G. Brida et al New Journal of Physics 14 (2012) 085001

  36. Fast TES Joint Projects for the exchange of researchers within the Executive Programme Italy-Japan 2010-2012 Alignment: ADR cold finger

  37. Fast TES

  38. Fast TES TiAu TES Tc=301 mK 73 phs =1535 nm @ 500 kHz means 3.65x106 photons/s (473 fW) QE  50 %

  39. Fast TESsreview

  40. TES: High energy resolution Rn=0.45  45nm Au+45nm Ti 10 mm x 10 mm Tc=106 mK Ce=0.35fJ/K

  41. TES: High energy resolution teff = 3.8 ms DE= (0.113 ± 0.001) eV (Submitted to APL)

  42. Impedance

  43. Conclusions TES  Photon number resolving detectors   Wavelength range: UV-IR   Quantum efficiency:50%90%  Dark counts: background limited   Count rate:  1 MHz   Working temperature: < 1K 

  44. Chi fa cosa Fabbricazione: C. Portesi, E. Monticone Caratterizzazione : E. Taralli, L.Lolli , E. Monticone, M. Rajteri (criogenica, elettrica e ottica) E. Taralli, L. Callegaro (impedenza) Sviluppo  Taratura Applicazioni Ottica quantistica: A. Avella,G. Brida, L. Ciavarella, I. Degiovanni, M. Genovese, M. Gramegna, M.G. Mingolla,F. Piacentini, M.L. Rastello, P. Traina  Collaborazioni  J. Beyer, D. Fukuda, T. Numata, M.G.A. Paris, M. White, G. Cantatore, G. Ventura

  45. Finanziamenti 2001-2004 -Fotorivelatori superconduttivi ad elettroni caldi per il VIS-IR -Realizzazione di STJ come rivelatori in regime di conteggio di fotoni per applicazioni astrofisiche E45 (2006-2010) Rivelatori superconduttivi a transizione di fase per conteggio di singoli fotoni Quantum Candela (2008-2011) Progettopremiale P5 (2012-2013) Oltre I limiticlassicidellamisura NEW08 MetNEMS (2012-2015) Metrologywith/for NEMS

  46. Grazie per l’attenzione!

More Related