1 / 19

Analysis of Phase Noise in a fiber-optic link

Analysis of Phase Noise in a fiber-optic link. Cecil D. Thomas Aug 20 ’04. Outline. Introduction Why optical fibers? > Huge bandwidth > Immunity to interference > Low attenuation > Etc. * Where do we use optical fibers?. Problems in a fiber link > Attenuation > Dispersion

nero
Télécharger la présentation

Analysis of Phase Noise in a fiber-optic link

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Analysis of Phase Noise in a fiber-optic link Cecil D. Thomas Aug 20 ’04

  2. Outline • Introduction Why optical fibers? > Huge bandwidth > Immunity to interference > Low attenuation > Etc. * Where do we use optical fibers? • Problems in a fiber link • > Attenuation • > Dispersion • > Phase noise ( How to quantify this problem in • different applications?) • > etc. * Conclusions

  3. Analog fiber-optic links are used in • Distribution of reference signals like local oscillators. • Video transmission as in Cable TV. • Antenna remoting for radar systems. • Etc.

  4. Major problems in a fiber-optic link • Attenuation = deterioration in signal strength • Dispersion = pulse broadening (causes ISI) • Phase Noise • Etc.

  5. Significance of Phase Noise • A high merit frequency distribution system should perform with a phase fluctuation of less than 1 degree over several days of operation. • Detection range, dynamic range, range resolution etc. are some of the radar parameters affected by phase instabilities. • Poor phase noise degrades the quality of television pictures and data transmission.

  6. Definition of Phase Noise

  7. What causes phase noise in a fiber-optic link? • Temperature fluctuation of the link • Fluctuation of longitudinally applied stress • Relative intensity noise of the laser • Back reflections in the cable • Bias fluctuations of the photodiode • Bias fluctuations of either directly modulated laser or the external modulator • Amplified spontaneous emission noise • Etc.

  8. Our Tasks • Quantify Phase Noise in the fiber-optic link • Study the effect of Wavelength selection • Study the effect of optical amplification • Assumptions • External modulation and direct detection • Optical amplification

  9. Block diagram of experimental setup Laser Modulator EDFA Photo detector Phase detector Filter RF Amp Phase shift = 90 degrees

  10. Methodology • Signal from the RF source traverses two separate paths before reaching the phase-detector > 8.8 Km of fiber after modulating the laser output > One meter of electric cable • The length of the electric cable is adjusted so that the phase difference between the two paths is 90 degrees. • Time samples from the digital oscilloscope are downloaded to a PC. • Matlab is then used to calculate Power Spectral Density from the time-voltage samples.

  11. Average noise floor = -85.66dBm/Hz

  12. Effect of wavelength selection (no optical amplification)

  13. Effect of varying the output power of laser source

  14. Output power vs. Input Power of EDFA

  15. Effect of EDFA

  16. Phase noise for different input powers

  17. Conclusions • Phase noise in an optical fiber-link was quantified • Wavelength selection does not have much effect on phase noise (< 2dB). • As laser power output increases, phase noise increases almost linearly (effect of shot noise, thermal noise). • Average phase noise increases by about 2.7dB with the addition of the EDFA. • For EDFA, phase noise decreases as input power increases (matches with theory).

More Related