1 / 39

EVALUASI PRODUKTIVITAS TANAH : ASPEK BIO-KIMIA Mk. Stela-smno.fpub.jun2014

EVALUASI PRODUKTIVITAS TANAH : ASPEK BIO-KIMIA Mk. Stela-smno.fpub.jun2014. ASPEK BIOLOGIS & KIMIA PRODUKTIVITAS TANAH. Pola aliran biomasa pupuk kandang dan sisa panen tanaman di lahan pertanian sangat beragam sesuai dengan praktek budidaya pertanian di daerah iklim basah dan kering .

nijole
Télécharger la présentation

EVALUASI PRODUKTIVITAS TANAH : ASPEK BIO-KIMIA Mk. Stela-smno.fpub.jun2014

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EVALUASI PRODUKTIVITAS TANAH : ASPEK BIO-KIMIA Mk. Stela-smno.fpub.jun2014

  2. ASPEK BIOLOGIS & KIMIA PRODUKTIVITAS TANAH Polaaliranbiomasapupukkandangdansisapanentanamandilahanpertaniansangatberagamsesuaidenganpraktekbudidayapertaniandidaerahiklimbasahdankering. Biasanyasemuabiomasaakar ( misal, 40% dari total pertumbuhantanaman) dan 10-30% daribiomasatajuktanamandi-daur-ulangdalamsistempertanamansemusim. Where alley cropping and agroforestry are practised, values are more variable, but possible inputs could be very significant where the trees, from which the litter is taken, are grown away from the annual crops. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  3. ASPEK BIOLOGIS & KIMIA PRODUKTIVITAS TANAH Kalaudua-pertigadaun-daunpohon legume dipanensetiaptahun, nilaibiomasaseresahinisangatbesardankualitasnyalebihbaikdibandingdenganjeramisisapanentanamansemusim lain; biomasaleguminisebagaipupukhijaudi-daur-ulangdilahan. Tree root material is not available for decomposition in the crop field unless it is spatially overlapping (e.g. as an intercrop), in which case the trees will compete with the crop for soil nutrients, water, light and space. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  4. ProduksibiomasadedaunandariPohonMultiguna (Young 1989) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  5. ASPEK BIOLOGIS & KIMIA PRODUKTIVITAS TANAH Lajudekomposisibiomasaseresahdauntergantung pd kondisilingkungannya, terutamasuhudanlengastanah. Keduakondisilingkungantanahinimempengaruhipenghancuranfisikseresahdanmenentukanpopulasi & aktivitashewantanahserta fungi tanah yang “makan” bahanorganiktersebut. Decomposition also varies with plant type and age of litter, being slower for heavily lignified material. The specific properties of litter from different species, and the generally exponential form of litter decay (the rate of decomposition slowing with time) lead to values that suggest half-lives of litter ranging from 1 to about 10 years. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  6. ASPEK BIOLOGIS DAN KIMIA PRODUKTIVITAS TANAH Beberapafaktorygmempengaruhikecepatandekomposisi BOT dansiklusharaadalahspesiestanaman, suhudanlengastanah, sertafaktorpengelolaantanaman. Adaempatcarauntukmengelolaresidutanaman: Stubble mulch in which residues are left standing; Surface mulch, where above-ground residues are cut and left on the top of the soil after harvest; Incorporation by ploughing; and Cut-and-carry, in which surface residue is removed and (if not used for livestock or thatching, etc.) returned as a surface mulch about planting time for the subsequent crop; this is usually combined with ploughing of below-ground residues. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  7. Konstantedekomposisi, k, untukbiomasajenislegumtropis. Nilai-nilaiinidihitungdneganpersamaan exponential untukdekomposisi BO denganmemakai data dalampustaka ( Juo and Payne 1993) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  8. ORGANISME TANAH YG BERASOSIASI DNEGAN TANAMAN Bacteria dan Nitrogen Cropping in dryland regions needs nitrogen to be economically successful (e.g., Keating et al. 1991). Two sources of nitrogen are from organic matter (Chapter 2, section Soil pores and water characteristics) and from nitrogen-fixing bacteria associated with plant roots. Bradyrhizobium and Rhizobium species infect plant roots forming galls or nodules, and fix nitrogen from the soil atmosphere directly to the plants. Locally-adapted, heat-tolerant strains survive from crop to crop in wet-and-dry climates and, whether established by natural colonization or by inoculation of the crop seed at sowing, they subsequently fix variable quantities of nitrogen. Kalauinfeksibakteridapatefektif, bacteria biasanyadapatmemfiksasisekitar 70-100% dari total nitrogen ygdigunakanolehtanaman, proporsiinilebihrendahkalauadaaplikasipupuk N anorganik. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  9. Efek N mineral tanahdanpupuk N terhadapproduktivitas N tanamandanproporsi (P) sertajumlah N-tanamanygberasaldarifiksasi N2 ( Peoples and Craswell 1992) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  10. ORGANISME TANAH YG BERASOSIASI DG TANAMAN The extent of the effectiveness of infection of legume crops in the wet-and-dry tropics needs to be surveyed. Temperate research indicates that nitrogen fixed by bacteria ranges from 20 to 120 kg N/ha in a growing season for annual crops (Table 24). In the semi-arid tropics, amounts of nitrogen fixed per hectare range from none, where nodulation is ineffective, to 16 kg N in soybean naturally colonized by rhizobia, to 84 kg N when inoculated. Fiksasi Nitrogen padakedelaidankacang-tanahsebesar 50-70 kg N/ha/musimtanamdilaporkandi Senegal (Gigouet al. 1985). Bakterifiksasi Nitrogen berasosiasidneganpohon legume dapatmemfiksasisejumlah nitrogen sepertikedalaidankacangtanah. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  11. Fiksasi Nitrogen olehpohondanbelukar. Values are per growing season or per year unless the number of months is given in brackets (Young, 1989 ; Peoples and Craswell 1992) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  12. ORGANISME TANAH YG BERASOSIASI DG TANAMAN Fungi, Algae dan Hara Berbagaijenis fungi membantupenyerapanharaolehakartanaman, terutama phosphorus. Banyakjenis fungi hidupberasosiasidenganakartanaman. One group, vesicular arbuscularmicorrhizal fungi (VAM), form both vesicles and arbuscules (knot-like structure) on the surface and within the root. They also colonize soil animals including earthworms and woodlice. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  13. ORGANISME TANAH YG BERASOSIASI DNEGAN TANAMAN Mikrobainibanyakdijumpaidalam topsoil hinggakedalaman 10 cm (Habte 1989). Merekainimembantupenyerapanhara, terutamafosfordaritanah yang miskinfosfor. Merekainijugamenyediakanproteksibagitanamaninangnya, keberadaannyadapatmenurunkankolonisasiolehpatogen. Ellis et al. (1985) also found that wheat plants inoculated with VAM were more drought-tolerant than plants without VAM. Importantly, comparisons of conventional cropping systems using inorganic fertilizers and herbicides with organic systems not using herbicides have found much higher levels of infection of crop roots by these beneficial fungi in the organic system (Ryan et al. 1994). Pengelolaanorganismetanahygbersifatasosiatifdanmenguntungkanmenjadibagianpentingdarisistempertanamanyglestari. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  14. Frequency (%) fungi VAM dalam macro-invertebratatanah yang diambildariekosistemalamdanpertaniandi Ohio (data are combined from 1986 and 1987 samplings) (Source: Rabatin and Stinner 1989) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  15. ORGANISME TANAH YG BERASOSIASI DNEGAN TANAMAN GULMA, HAMA & PENYAKIT TANAMAN Gulma, hamadanpenyakitsemuanyabersaingdnegantanamanatausecaralangsungmereduksivigourtanaman. Banyakhamadanpenyakitbersifat “soil-borne”. Weed life-cycles depend on replenishment of the soil seed bank and survival of the seeds against natural decay, predation by soil animals and depletion by human management, particularly cultivations. Ecological weed control thus aims to minimize recruitment of new seed into the soil as a long-term strategy as well as trying to reduce artificially the size of the weed seed bank in the soil. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  16. KETERSEDIAAN HARA DALAM TANAH HARA ANORGANIK Hara anorganikdalamtanahdapatberbentuk ion dan mineral misal. Oksida-oksida, silikatdanfosfat; keduanyadijerappadapermukaanpartikelliatdanbahanorganik , danadadalamlarutantanah. Sebagianbesardarihara, terutama nitrogen, ditemukandalambahanorganiktanah, sehingga BOT danorganismetanahsangatpentingbagi per-hara-an tanah. Clay particles, because of their crystalline structures, carry an inherent electrical charge. This results in attractive forces (mainly van der Waals forces) and repulsive forces (electrostatic forces) which give clay species their particular characteristics. The inherent surface charge also causes a layer of associated ions to align next to the solid particles forming a so-called diffuse double layer because it consists of a relatively inexchangeable layer (the Stem layer) closest to the surface of the particle and an outer, readily exchangeable layer, of varying thickness, called the diffuse layer. Sposito (1984) explains this more fully. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  17. KETERSEDIAAN HARA DALAM TANAH Penjerapan (Adsorption) merupakanakumulasinetomateripadaruangantarafasepadatandanfasecairan. Ion-ion yang mudahditukardijerap dg kekuatan “lemah” pd permukaankoloidtanahdanmudahdapatdigantikandneganjalanpencucianmenggunakanlarutanelektrolit. KTK tanahmerupakanjumlah mole ion ygdijerapdandapatdigantikandarisuatu unit massatanah; ion-ion sepertiinilazimdisebut “ion mudahditukar”. Sposito (1984) notes that 'Much controversy exists over the surface chemical significance of ion exchange capacities'. The maximum surface charge measurement indicates a soil's potential to adsorb ions while its actual capacity, which is more relevant agriculturally, has a lesser value. Table 28 gives representative cation exchange capacities (CECs) for selected soil orders. It is notable that though the CEC of each order ranges widely, the predominant soils in wet-and-dry climates have low CECs. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  18. KETERSEDIAAN HARA DALAM TANAH Nilai-nilai KTK lapisantanahpermukaan (molC/kg) (: Sposito 1984) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  19. KETERSEDIAAN HARA DALAM TANAH Proporsikationtukardalam KTK beragamdengan pH tanah; proporsibasa-tukarygmudahtersediamenurundarisekitar 1 pada pH 8 dan 0.5 pada pH 6 menjadisekitar 0.2 pada pH 4.5. Padakondisi pH kurangdari 6 terjadipeningkatan ion-ion aluminium yang dapatbersifattoksik. The electrical conductivity and CEC of a soil are related to its clay content (e.g., Rhoades 1990a). Similarly, because of the electrical charge of the clay particles, a high but variable percentage of the soil organic matter is bound to them. It may be as high as 90% ; and there are the two postulated main ways that organic matter is bonded to clay. These are weak anion exchange and strongly-held ligand exchange which is a form of chemical bonding. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  20. Proporsi C-organikdalamtanah yang berbentukKompleksLiat-Organik. 1 Defined as the material sinking when the soil was ultrasonically dispersed in an organic liquid of density 2 g/cm3. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  21. KETERSEDIAAN HARA DALAM TANAH Liatdanbahanorganiktanahmempunyaimuatanlistrik, dankeduanyamempunyaisumbanganbesardalammenentukankemampuantanahmenahanhara-tersediadanstabilitasstrukturtanah. Pieri (1992)mengusulkanbahwastabilitasstrukturtanah (untuktanah-tanahdiAfrikaygditelitinya) dapatdideskripsikandengannilaikritis S lebihbesardari 9, dimana S adalahrasiobahanorganikdengan (liat plus debu) , dinyatakandalampersentase. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  22. Diagram jembatananionik : Pertukaran Anion. R adalahKoloidhumikpoli-anionikhumic colloid. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  23. Diagram jembatan anion: Pertukaranligand. R adalahkoloidhumikpoli-anionik. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  24. Tingkat kritis BOT untukmempertahankanstabilitasfisikstrukturtanah (Pieri 1992) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  25. KETERSEDIAAN HARA DALAM TANAH Akartanamanmenyerapharaanorganikdarilarutantanah (kecuali legumes, yang mampumemfiksasi nitrogen langsungdariudaratanah). Unsurharadapattersediabagitanamankalauiaberbentuk ion bebasdanberadadalam zone perakaran. Ion-ion haradalamtanahbergerakmemasuki zone akarmelalui pergerakan air tanah, dan ion hara memasuki tanaman melalui evapotranspiration. Diffusion along concentration gradients is important for less-mobile ions such as phosphorus, particularly where soil solution concentrations are weak and root densities are high (i.e., the transport path is short). Sposito (1984) and others give calculated values for the diffusivity of nutrients. Diffusion times range from 1 day for an ion to move 3 mm (which is comparable with the time it would take to move by convection in the mass flow of water) for nitrate to about 200 days for potassium, magnesium and molybdenum, and to thousands of days for other nutrients. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  26. KETERSEDIAAN HARA DALAM TANAH pH rendahmempengaruhiakartanamansecaralangsungkarenaefekkonsentrasi H+ thdintegritasmembranselakardankapasitaspertukarannya. Kemasaman jug mempengaruhiakarsecratidaklangsungmelaluiduacara. Iamengubahketersediaan ion dalamlarutantanah (membuatspesies Al tersediaygtoksikbagitanaman plants). Iajugamempengaruhimineralisasimelalui proton ygbersaingdengancationsuntukmendapatkanligandygterlarutdangugusfungsional pd permukaanygbermuatan. Soil pH also affects micro-organisms, and thus the speed of transformations, for example, those between nitrate and ammonium. Poor plant growth on acid soils may thus be caused directly by hydrogen ions, by toxicities of aluminium or manganese, or through deficiencies of calcium, magnesium, potassium, phosphorus, nitrogen or trace elements. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  27. KETERSEDIAAN HARA DALAM TANAH Chase et al. (1989) describe these relationships for sandy Sahelian soils. Variation in pH across distances of 15 m can be as much as pH 4.5 to 7.5, with associated decreases in aluminium and hydrogen ions, and increases in crop productivity. Nilaikritis pH yang mempengaruhipertumbuhantanamanternyataberagamdneganjenistanaman, cultivar dantipetanahnya. Tingkat kritisinidapatsebesar pH 5 - 5.5 untukjenistanamanygtidaktoleran Al , tetapijenistanamanlainnya yang toleranmempunyainilaikritis pH 3.9 - 4. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  28. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA Bahanorganiktanahberhubungandenganpartikel (mineral) tanahsecarakimiawidansecarafungsional. BOT berhubunganeratdenganberbagaiproblematikbiologisdanketersediaanharadalamtanah. Rates of loss of organic matter independent of erosion tend to be slow, but important as they are cumulative. Padakondisilingkunganlahan-keringdiAfrika Barat, lajukehilangan BOT dapatmencapai 2-4% per tahun. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  29. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA TABLE 31. Annual rate of organic matter loss measured in the field in the savannah area (Source: Pieri 1992) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  30. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA Larson dan Pierce (1991) mengusulkanbahwaseperangkat data ygdikumpulkansecaraanalitiksangatpentinguntukmemantaukelestariantanah. They include two measures of organic matter among the ten attributes that they consider essential (Table 32). Their concept of requiring agreed minimum data sets is consistent with the approach to assessing sustainability . Kalauseperangkat data tersebuttelahdiperoleh (Larson and Pierce 1991), setiapatributtanahditentukandenganwaktureferensitertentu (T0) danperubahankondisitanahdapatdiukurselamaperiodewaktutertentu (T1), misalnya 1 – 10 tahun. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  31. TABLE 32. Soil attributes and standard methodologies for their measurement to be included as part of a minimum data set (MDS) for monitoring soil quality (Source: Larson and Pierce 1991) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  32. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA Pengukuran C-organiktanahsecaralangsungdianggaptidak-efektifbiayadantidakinformatif. It is more likely that surrogate measures are adequate and, if sufficiently simple and cheap, have some likelihood of being used. Pieri (1992) suggests that a bleached (possibly brittle) soil surface and plant deficiency symptoms are useful surrogates for loss of organic matter, low CEC and soil nutrient imbalances. Kehilangan BOT biasanyadibarengidengandegradasistrukturtanah, indikator-indikatorsepertiturbiditas air permukaan (mis. Air sungai) dianggapsangatberguna. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  33. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA Hara Mineral danProblematikKesuburan Tanah (Source: Pieri 1992) Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  34. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA Indikatordefisiensiharameliputi : warna (mis. Kemerahanuntdefisiensikalium); pucat (gejalaumum, tetapimerupakangejalakhususdefisiensi N); daun-daunkecildantanamankerdil. Other symptoms, such as leaf curling and accelerated dropping of older leaves, may also be helpful but might equally indicate water deficits. There are several publications with photographs of nutrient deficiencies; these, however, might require further tailoring to specific combinations of crops and soils. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  35. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA Gejalaefekkemasamantanahdicirikanolehtanamankerdil, mukatanahbersihvegetasi, danjenis-jenisgulmaygtoleranasamtumbuhlebihbaik. Salinitasjugadicerminkanolehperubahanvegetasisepertipohonmatitanpaalasanygjelasataumeningkatnyapopulasiherbaygtolerangaram. Other symptoms of salinity include: waterlogged or bare soil; livestock congregating and licking the soil surface for salt; visible salt crystals; the smell of salt; and clear catchment water because salt settles sediment. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  36. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA PengelolaanuntMemeliharaBiologidan Hara Tanah The aim of management should be to create balanced organic matter and mineral budgets. It should ensure that, over several years (a complete crop rotation), soil organic matter is not depleted and that nutrients added equal or exceed those removed by cropping or lost in various ways. When managing organic matter farmers should recognize that the effects of animal and human manure, sewage sludge and plant residues last longer than those of green manure crops. Manfaatpupukhijaubiasanyaberlangsungselamasatuatauduamusim, karenabahanorganikinidimasukkanketanahsebelumdewasa (tua) danberlignin. Efekjangkapanjangbahanorganikterhadaporganismetanahjugaada. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  37. Aspek-aspekygdipertimbangkandalammemeliharadanameliorasibiologitanahdanharatanahAspek-aspekygdipertimbangkandalammemeliharadanameliorasibiologitanahdanharatanah Pemeliharaan: PencegahanDegradasi 1. PemilihanTanaman · Preference for rotations and intercropping with several species, as for Table 19· Inclusion of legume in rotation 2. PraktekBudidayaTanaman · Aplikasipupukanorganikuntukmenjaganeracaharaygnetral· Konservasiseresahtanaman· Aplikasikotoranmanusiadanhewan· Incorporation of organic wastes from industry and cities· Olahtanah minimum· Pengelolaanhayatihamadangulma· Mengurangilajupengasamanmelaluipemilihanjenistanaman, pengelolaanseresahdanpupuk. 3. Pengelolaan Air · Water harvesting· Minimization of salinity, if a problem is likely, through seasonal leaching and other practices Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  38. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA Aspek-aspekygdipertimbangkandalammemeliharadanameliorasibiologitanahdanharatanah Ameliorasiuntukmengontrokkerusakan : 1. Ketidak-seimbangandandefisiensihara · Berdasarkangejala visual, aolikasipupukanorganik· Mengubahpolatanamuntukmengurangiefekkemasaman 2. Degradasipermukaantanahmelaluikehilangan BOT, erositanaholeh air danangin : Aplikasibahanorganikberupalimbahorganik, mulsa, tanamanpenutuptanahdll. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

  39. INDIKATOR PROBLEMATIK BIOLOGIS DAN HARA PoladanPergiliranTanamanmempengaruhiketersediaanharatanah. Diversitaspertanamanmeningkatkanjumlahdanragamorganismetanahdanmengurangihamadanpenyakit. Soil acidification and salination are extreme cases of nutrient imbalance and, unlike other deficiencies, cannot be corrected simply by adding mineral fertilizers. Teknikpengelolaantanahuntmengurangiasidifikasi: Mengurangiproduksi proton denganjalanmeminimumkanpencuciannitrat (problem khususdidaerahiklimmusimaanbasah-kering); Menghindaripenggunaanpupuk ammonium danmengurangiakumulasibahanorganik; Mengapurtanah. Sumber:. http://www.fao.org/docrep/V9926E/v9926e05.htm#TopOfPage

More Related