1 / 24

开题 报告

开题 报告. 题目 : 硬碳负极材料的制备及其储锂 / 储 钠性能的研究. 报告学生 :金 娟 指导教师 :王成扬. 2013-9-23. 主要 内容. 1 研究背景. 2 课题总结. 3 实验方案. 4 实验进度. 1 研究背景. Na-ion battery and Li-ion battery Hard Carbon tuning particle size and morphology . optimize electrochemical performance. 石墨层间 0.335nm

niran
Télécharger la présentation

开题 报告

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 开题报告 题目:硬碳负极材料的制备及其储锂/ 储钠性能的研究 报告学生 :金 娟 指导教师 :王成扬 2013-9-23

  2. 主要内容 1研究背景 2 课题总结 3 实验方案 4 实验进度

  3. 1研究背景 • Na-ion battery and Li-ion battery • Hard Carbon • tuning particle size and morphology optimize electrochemical performance.

  4. 石墨层间0.335nm 锂嵌入的能耗 0.03eV 钠嵌入能耗0.12eV 0.37nm---硬碳、中空碳纳米纤维 钠嵌入能耗0.053 eV 锂离子蓄电池 质量轻---交通运输 钠离子略重,更适用于能量的储存供应,比如应用在工业领域。 半电池电势较锂离子电池电势高0.3 V, 因而还能采用分解电势较低的电解液 钠离子电池便宜 原材料丰富 容量更大的正极材料 嵌入性能更好的碳负极材料 或者合金材料

  5. hard carbon materials large interlayer distance and disordered Structure facilitates Na-ion insertion −extraction. 200− 300 mAh/g

  6. 200-300mAhg the cyclability and rate capability storage mechanism in disordered carbon sodium lithium the critical impact of inter-face and size effects on mass transfer, transport and storage tuning particle size and morphology optimize electrochemical performance. • Carbon Microspheres • porous carbon • hollow nanospheres • hollow carbon nanowires

  7. spherical particles • minimize the irreversible reactions between the electrolyte and the particles of sodium-carbon compounds. • intercalate lithium ions more uniformly (i.e.360 ).

  8. The sample exhibits low BET surface area 3m2/g and microporesare undetectable. In others words, there is no “open”porosity accessible to N2.

  9. fast kinetics and high capacity introduce nanoporosity and a hierarchical pore system into the anode. hierarchically porous carbon • offer the chemistry and structure to store and insert the lithium • the pore-transport system would ensure the accessibility of those sites by lithium ions.

  10. nanofibers shortened Li-ion insertion/ extraction distance ------improve capacity large surface to volume ratio -------rate performance.

  11. (c) Cycle performance of the HCNW electrode at a current density of mAh/g(0.2 C). (d) Discharge capacity of the HCNW electrode as a function of charge− discharge cycles at di fferent charge − discharge current densities of50 (0.2 C), 125 (0.5 C), 250 (1 C), and 500 (2 C) mAh/g, respectively.

  12. unique hollow structure good cycling performance provides a buffering zone for effective release of mechanical stress caused by Na-ion insertion − extraction. a very low initial Coulombicefficiency largely due to the high surface area (34.1 m2/g) material modification such as surface coating, electrolyte optimization, and the use of highly effective SEI film-forming additives.

  13. 相关文献 [1] Slater, M. D., et al. Sodium-Ion Batteries [J]. Advanced Functional Materials,2013,23(8): 947-958. [2] 孙颢.锂离子电池硬碳负极材料研究进展[J].化工新型材料, 2005. [3] Stevens D A,Dahn J R. High Capacity Anode Materials for Rechargeable Sodium-Ion batteries[J].J. Electrochem. Soc.,2000,147(4): 1271-1273. [4] Alcántara, R., et al. Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries[J]. Electrochemical and Solid-State Letters ,2005,8(4): A222. [5]Tang K., et al. Hollow Carbon Nanospheres with a High Rate Capability for Lithium-Based Batteries[J].ChemSusChem,2012,20:9748-9753. [6]Tang K., et al.Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries[J]. Advanced Energy Materials, 2012,2(7): 873-877. [7] JI Liwen, et al. Porous carbon nanofibers from elecrtospunpolyacylonitrile/SiO2 composites as an energy storage material [J]. Carbon,2009,47(14):3346-3354 [8] KIM C, YANG K S, et al. Fabrication of eletrospinning-derived carbon nanofibers webs for the anode material of lithium-ion secondary batteries[J]. Advanced Function Materials,2006,16(18):2393-1397. [9] Cao, Y., et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Lett,2012,12(7): 3783-3787.

  14. 2 课题总结 思路 1、不同形貌、结构的硬碳材料的制备及其储锂/储钠性能研究 2、不同前驱体制备的硬碳材料的储锂/钠性能的比较 选择不同的高分子前驱体,采用多种制备方法调控材料形貌、结构,并研究硬碳材料结构与储锂/储钠性能之间的构效关系,重点研究硬炭材料与充放电比容量、倍率性能、循环稳定性及储锂/储钠的反应机制。 意义 难点 结构、形貌的调控

  15. 1.1 PAN基多孔 硬碳微球的制备(稳定化---不同温度碳化) 与其储锂/钠性能研究 1.2 PAN基碳纤维的制备(静电纺丝—稳定化-碳化) 与其储锂/钠性能研究 1.3 中空PAN纳米纤维的制备(PAN/PMMA静电纺丝-稳定化-碳化) 2 淀粉基硬碳微球的制备与其储钠性能的研究 3 实验方案

  16. 实验小结 1.1 PAN基多孔 硬碳微球的制备(稳定化---不同温度碳化)与其储锂/钠性能研究

  17. 4 实验进度

  18. Thank You! Any more information please give some questions

More Related