240 likes | 427 Vues
开题 报告. 题目 : 硬碳负极材料的制备及其储锂 / 储 钠性能的研究. 报告学生 :金 娟 指导教师 :王成扬. 2013-9-23. 主要 内容. 1 研究背景. 2 课题总结. 3 实验方案. 4 实验进度. 1 研究背景. Na-ion battery and Li-ion battery Hard Carbon tuning particle size and morphology . optimize electrochemical performance. 石墨层间 0.335nm
E N D
开题报告 题目:硬碳负极材料的制备及其储锂/ 储钠性能的研究 报告学生 :金 娟 指导教师 :王成扬 2013-9-23
主要内容 1研究背景 2 课题总结 3 实验方案 4 实验进度
1研究背景 • Na-ion battery and Li-ion battery • Hard Carbon • tuning particle size and morphology optimize electrochemical performance.
石墨层间0.335nm 锂嵌入的能耗 0.03eV 钠嵌入能耗0.12eV 0.37nm---硬碳、中空碳纳米纤维 钠嵌入能耗0.053 eV 锂离子蓄电池 质量轻---交通运输 钠离子略重,更适用于能量的储存供应,比如应用在工业领域。 半电池电势较锂离子电池电势高0.3 V, 因而还能采用分解电势较低的电解液 钠离子电池便宜 原材料丰富 容量更大的正极材料 嵌入性能更好的碳负极材料 或者合金材料
hard carbon materials large interlayer distance and disordered Structure facilitates Na-ion insertion −extraction. 200− 300 mAh/g
200-300mAhg the cyclability and rate capability storage mechanism in disordered carbon sodium lithium the critical impact of inter-face and size effects on mass transfer, transport and storage tuning particle size and morphology optimize electrochemical performance. • Carbon Microspheres • porous carbon • hollow nanospheres • hollow carbon nanowires
spherical particles • minimize the irreversible reactions between the electrolyte and the particles of sodium-carbon compounds. • intercalate lithium ions more uniformly (i.e.360 ).
The sample exhibits low BET surface area 3m2/g and microporesare undetectable. In others words, there is no “open”porosity accessible to N2.
fast kinetics and high capacity introduce nanoporosity and a hierarchical pore system into the anode. hierarchically porous carbon • offer the chemistry and structure to store and insert the lithium • the pore-transport system would ensure the accessibility of those sites by lithium ions.
nanofibers shortened Li-ion insertion/ extraction distance ------improve capacity large surface to volume ratio -------rate performance.
(c) Cycle performance of the HCNW electrode at a current density of mAh/g(0.2 C). (d) Discharge capacity of the HCNW electrode as a function of charge− discharge cycles at di fferent charge − discharge current densities of50 (0.2 C), 125 (0.5 C), 250 (1 C), and 500 (2 C) mAh/g, respectively.
unique hollow structure good cycling performance provides a buffering zone for effective release of mechanical stress caused by Na-ion insertion − extraction. a very low initial Coulombicefficiency largely due to the high surface area (34.1 m2/g) material modification such as surface coating, electrolyte optimization, and the use of highly effective SEI film-forming additives.
相关文献 [1] Slater, M. D., et al. Sodium-Ion Batteries [J]. Advanced Functional Materials,2013,23(8): 947-958. [2] 孙颢.锂离子电池硬碳负极材料研究进展[J].化工新型材料, 2005. [3] Stevens D A,Dahn J R. High Capacity Anode Materials for Rechargeable Sodium-Ion batteries[J].J. Electrochem. Soc.,2000,147(4): 1271-1273. [4] Alcántara, R., et al. Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries[J]. Electrochemical and Solid-State Letters ,2005,8(4): A222. [5]Tang K., et al. Hollow Carbon Nanospheres with a High Rate Capability for Lithium-Based Batteries[J].ChemSusChem,2012,20:9748-9753. [6]Tang K., et al.Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries[J]. Advanced Energy Materials, 2012,2(7): 873-877. [7] JI Liwen, et al. Porous carbon nanofibers from elecrtospunpolyacylonitrile/SiO2 composites as an energy storage material [J]. Carbon,2009,47(14):3346-3354 [8] KIM C, YANG K S, et al. Fabrication of eletrospinning-derived carbon nanofibers webs for the anode material of lithium-ion secondary batteries[J]. Advanced Function Materials,2006,16(18):2393-1397. [9] Cao, Y., et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Lett,2012,12(7): 3783-3787.
2 课题总结 思路 1、不同形貌、结构的硬碳材料的制备及其储锂/储钠性能研究 2、不同前驱体制备的硬碳材料的储锂/钠性能的比较 选择不同的高分子前驱体,采用多种制备方法调控材料形貌、结构,并研究硬碳材料结构与储锂/储钠性能之间的构效关系,重点研究硬炭材料与充放电比容量、倍率性能、循环稳定性及储锂/储钠的反应机制。 意义 难点 结构、形貌的调控
1.1 PAN基多孔 硬碳微球的制备(稳定化---不同温度碳化) 与其储锂/钠性能研究 1.2 PAN基碳纤维的制备(静电纺丝—稳定化-碳化) 与其储锂/钠性能研究 1.3 中空PAN纳米纤维的制备(PAN/PMMA静电纺丝-稳定化-碳化) 2 淀粉基硬碳微球的制备与其储钠性能的研究 3 实验方案
实验小结 1.1 PAN基多孔 硬碳微球的制备(稳定化---不同温度碳化)与其储锂/钠性能研究
Thank You! Any more information please give some questions