1 / 17

Quantum Computing and the Limits of the Efficiently Computable

Quantum Computing and the Limits of the Efficiently Computable. Scott Aaronson MIT. GOLDBACH CONJECTURE: TRUE NEXT QUESTION. Things we never see…. Warp drive. Ü bercomputer. Perpetuum mobile.

nizana
Télécharger la présentation

Quantum Computing and the Limits of the Efficiently Computable

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson MIT

  2. GOLDBACH CONJECTURE: TRUE NEXT QUESTION Things we never see… Warp drive Übercomputer Perpetuum mobile The (seeming) impossibility of the first two machines reflects fundamental principles of physics—Special Relativity and the Second Law respectively So what about the third one?

  3. Some would say Alan Turing & friends already answered this question in the 1930s No computer program can infallibly decide the truth or falsehood (or even the provability) of arbitrary mathematical statements! But what about “merely” searching all possible proofs with (say) 109 symbols or fewer? Can that be done in a way that avoids exhaustive search?

  4. This sounds like (literally) a $1,000,000 question: P=NP? NP: Nondeterministic Polynomial-Time P: Polynomial-Time If there actually were a machine with [running time] ~Kn (or even only with ~Kn2), this would have consequences of the greatest magnitude.—Gödel to von Neumann, 1956

  5. However, an important presupposition underlying P vs. NP is the... Extended Church-Turing Thesis “Any physically-realistic computing device can be simulated by a deterministic or probabilistic Turing machine, with at most polynomial overhead in time and memory” So how sure are we of this thesis? Have there been serious challenges to it?

  6. Old proposal: Dip two glass plates with pegs between them into soapy water. Let the soap bubbles form a minimum Steiner tree connecting the pegs—thereby solving a known NP-hard problem “instantaneously”

  7. Ah, but what about quantum computing?(you knew it was coming) Quantum mechanics: “Probability theory with minus signs” (Nature seems to prefer it that way)

  8. Quantum Computing A quantum state of n qubits takes 2n complex numbers to describe: Chemists and physicists knew that for decades, as a practical problem! In the 1980s, Feynman, Deutsch, and others had the amazing idea of building a new type of computer that could overcome the problem, by itself exploiting the exponentiality inherent in QM Actually building a QC: Damn hard, because of decoherence. (But seems possible in principle!)

  9. Popularizers Beware:A quantum computer is NOT like a massively-parallel classical computer! Exponentially-many basis states, but you only get to observe one of them Any hope for a speedup rides on the magic of interference

  10. Interesting BQP (Bounded-Error Quantum Polynomial-Time): The class of problems solvable efficiently by a quantum computer, defined by Bernstein and Vazirani in 1993 Shor 1994: Factoring integers is in BQP NP-complete NP Factoring BQP P

  11. But factoring is not believed to be NP-complete! And today, we don’t believe BQP contains all of NP(though not surprisingly, we can’t prove that it doesn’t) Bennett et al. 1997: “Quantum magic” won’t be enough If you throw away the problem structure, and just consider an abstract “landscape” of 2n possible solutions, then even a quantum computer needs ~2n/2 steps to find the correct one (That bound is actually achievable, using Grover’s algorithm!) So, is there any quantum algorithm for NP-complete problems that would exploit their structure?

  12. Quantum Adiabatic Algorithm(Farhi et al. 2000) Hi Hf Hamiltonian with easily-prepared ground state Ground state encodes solution to NP-complete problem Problem: “Eigenvalue gap” can be exponentially small

  13. Nonlinear variants of the Schrödinger Equation Abrams & Lloyd 1998: If quantum mechanics were nonlinear, one could exploit that to solve NP-complete problems in polynomial time 1 solution to NP-complete problem No solutions

  14. Relativity Computer DONE

  15. Zeno’s Computer STEP 1 STEP 2 Time (seconds) STEP 3 STEP 4 STEP 5

  16. “The No-SuperSearch Postulate”There is no physical means to solve NP-complete problems in polynomial time. Includes PNP as a special case, but is stronger No longer a purely mathematical conjecture, but also a claim about the laws of physics If true, would “explain” why adiabatic systems have small spectral gaps, the Schrödinger equation is linear, closed timelike curves don’t exist...

  17. BosonSampling (with Alex Arkhipov): A proposal for a rudimentary optical quantum computer, which doesn’t seem useful for anything (e.g. breaking codes), but does seem hard to simulate using classical computers Some of My Recent Research Computational Complexity of Decoding Hawking Radiation: Building on a striking recent proposal by Harlow and Hayden—that part of the resolution of the black hole information problem might be that reconstructing the infalling information from the Hawking radiation would require an exponentially long computation

More Related