1 / 43

Introduction IPv6 Alexis Dorais-Joncas

2. Plan. Introduction : TCP/IP(v4|v6)Comparaison des en-ttesArchitecture d'adressage v6DNS / DHCPIPv6 en 2005. 3. Introduction : TCP/IP. Recherches finances par USA (projet DARPA)1983 : adopt Military Standard => RFC739 (TCP) et RFC791 (IP)TCP : Transport Control Protocol Protocole l

nolen
Télécharger la présentation

Introduction IPv6 Alexis Dorais-Joncas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. 1 Introduction IPv6 Alexis Dorais-Joncas

    2. 2 Plan Introduction : TCP/IP(v4|v6) Comparaison des en-ttes Architecture dadressage v6 DNS / DHCP IPv6 en 2005

    3. 3 Introduction : TCP/IP Recherches finances par USA (projet DARPA) 1983 : adopt Military Standard => RFC739 (TCP) et RFC791 (IP) TCP : Transport Control Protocol Protocole layer-4 (transport) tablissement de sessions (3-way handshake) Fiable (retransmission, checksum)

    4. 4 Introduction : TCP/IP IPv4 : Internet Protocol v4 Protocole layer-3 (rseau) Permet dchanger un payload travers diffrents rseaux Adressage sur 32 bits (4,294,967,296 adresses max, en omettant les pertes dues au sous-rseautage)

    5. 5 Introduction : TCP/IP IPv6 : Internet Protocol v6 Objectifs similaires IPv4 Adressage 128 bits : 340,282,366,920,938,463,463,374,607,431,768,211,456 adresses total Objectif : ISP devrait dlguer un /64 pour chaque client => 18,446,744,073,709,551,616 adresses dans votre maison

    6. 6 (Parenthse : Notation CIDR) Classless Inter Domain Routing (CIDR) Permet lagrgation des prfixes diminution de la taille de la table de routage Assignation des adresses plus granulaire limination des barrires des classes de sous-rseaux prtablies (p. ex. : classe A -> 255.0.0.0, classe B -> 255.255.0.0, etc)

    7. 7 Notation standard : 10.0.0.0 netmask 255.0.0.0 Notation CIDR (utilise systmatiquement avec IPv6) : 10.0.0.0/8 3ffe:b00::/32 Consiste identifier le nombre de bits rservs ladresse du rseau, autrement dit identifier la taille du rseau (Parenthse : Notation CIDR)

    8. 8 Introduction : TCP/IP Quelques avantages de IPv6 Autoconfiguration (RA/RS=>SA, DAD, PMTU discovery) limination du NAT (pansement sur un problme) Sans NAT => vraie communication end-to-end (IPSec) MobileIPv6 -> limination du routage en triangle

    9. 9 Introduction : TCP/IP

    10. 10 Introduction : TCP/IP IPv5 ?? Protocole Stream (SP) Exprimental Objectif : Rservation de ressources Mme systme dadressage que IPv4, devait coexister avec IPv4 et non le remplacer Protocole mort-n

    11. 11 Comparaison des en-ttes

    12. 12 Comparaison des en-ttes

    13. 13 Comparaison des en-ttes

    14. 14 Comparaison des en-ttes Extension Headers Hop-By-Hop Options Header Destination Options Header Routing Header Fragment Header Authentication Header Encapsulating Security Payload Header Peu utiliss, permettent lextension du protocole

    15. 15 Comparaison des en-ttes Notes gnrales MTU : Maximum Transmission Unit, taille des donnes pouvant tre transmises par la couche infrieure Liaison (link-layer, p. ex. Ethernet) 68 octets <= IPv4 MTU <= 65536 octets 1280 octets <= IPv6 MTU <= 65536 octets Possibilit dun MTU maximal de 4 GB avec loption Jumbogram du Hop-By-Hop extension header videmment utile seulement avec un protocole link-layer qui supporte cette taille de MTU (futures technologies)

    16. 16 Adressage IPv6

    17. 17 Adressage IPv6 Reprsentation hexadcimale plutt que dcimale : 3ffe:0501:0000:0000:babe:97ff:dead:beef Suite de 0 => :: (3ffe:0501::babe:) IPv6 dans un URL : entre [] http://[3ffe:1:5::35b1]:80/index.html Long et facile se tromper Utilisation des FQDN recommande

    18. 18 Adressage IPv6 Types dadresses : Unicast Multicast Anycast Noter la disparition du broadcast

    19. 19 Adressage IPv6 Unicast Global (publique(=)

    20. 20 Adressage IPv6 Link-Local Configuration automatique Scope strictement limit au sous-rseau Utilise pour Neighbor discovery, router discovery, protocoles de routage Prfixe : FE80::/10

    21. 21 Adressage IPv6 Special purposes Unspecified => :: (tous des 0) Utilise pour la requte DHCP initiale et DAD Loopback => ::1 (mme fonction que 127.0.0.1)

    22. 22 Adressage IPv6 Multicast Identifie un groupe dinterfaces Une interface peut faire partie de 0n groupes Prfixe : FF00/8 Remplace le broadcast

    23. 23 Adressage IPv6 Adresses multicast assignes : FF02::1 => All link nodes FF02::2 => All link routers FF02::9 => All link RIP Routers FF05::101 => All site NTP Servers

    24. 24 Adressage IPv6 Anycast Adresse assigne plus dune interface Principe de un-au-plus-proche Adresses alloues partir du bloc dadresses Unicast Usage actuel trs limit Router-subnet anycast MobileIPv6 Home-Agent anycast

    25. 25 Adressage IPv6 Adresses requises sur un nud : Link-local pour chaque interface Loopback All-nodes multicast address Unicast / anycast addresses au besoin Solicited-node multicast adress pour chaque adresse (any|uni)cast (Neighbour discovery, rempalce ARP) Gnralement, un nud possde donc plus dune adresse Force dIPv6 : espace dadressage suffisant permettant un design de protocoles simples et efficaces

    26. 26 DNS / DHCP

    27. 27 DNS

    28. 28 DHCPv6 Version amliore de DHCPv4 Permet un meilleur contrle que les mcanismes dautoconfiguration Permet la configuration dans un environnement sans routeur Dynamic DNS updates Utilisation typique Router sollicitation Si la rponse mentionne DHCP ou aucun router nest dcouvert : DHCP-Sollicit Multicast utilis : FF02::1:2 => all-dhcp-agents (serveur DHCP ou relais) FF05::1:3 => all-dhcp-servers (site-local scope)

    29. 29 IPv6 en 2005

    30. 30 IPv6 en 2005

    31. 31 IPv6 en 2005 Prfixes annoncs dans la table de routage globale (2002) :

    32. 32 IPv6 en 2005 Forte activit en Asie => plus touchs par le manque dadresses IPv4 Cellulaires v6-enabled sont monnaie courante en Asie IPv6 rsidentiel via tunneling est en phase de tests Amrique du Nord : intrt grandissant mais rien de concrt Hexago (www.hexago.com) Qubcois Leader nord-amricain en migration v4/v6 Fournisseur du tunnel broker Freenet6 (www.freenet6.net)

    33. 33 IPv6 en 2005 Systmes dexploitation v6-enabled: *BSD (Kame stack) MacOS X Linux (Usagi) Solaris 8+ Windows 2000 : Advanced Networking pack (experimental) Windows XP : Advanced Networking pack disponible dans le SP1 seulement

    34. 34 IPv6 en 2005 Comment avoir un rseau IPv6 aujourdhui Qubec? Tunnel broker (freenet6, sixxs, he.net) Routeur (recommandation : Linux ou BSD) Clients v6-enabled

    35. 35 IPv6 en 2005

    36. 36 IPv6 en 2005

    37. 37 Merci ! Questions ?

    38. 38 Solicited-Node Multicast Addresses In addition to the regular multicast addresses, each unicast address has a special multicast address called its solicited-node address. This address is created through a special mapping from the devices unicast address. Solicited-node addresses are used by the IPv6 Neighbor Discovery (ND) protocol to provide more efficient address resolution than the ARP technique used in IPv4. All solicited-node addresses have their T flag set to zero and a scope ID of 2, so they start with FF02. The 112-bit group ID is broken down as follows

    39. 39

    40. 40 80 bits consisting of 79 zeroes followed by a single one; this means that in colon hexadecimal notation, the next five hexadecimal values are 0000:0000:0000:0000:0001, or more succinctly, 0:0:0:0:1. 8 ones: FF. 24 bits taken from the bottom 24 bits of its unicast address. So, these addresses start with FF02:0:0:0:0:1:FF followed by the bottom 24 bits of the unicast address. So, the node with IP address 805B:2D9D:DC28:0:0:FC57:D4C8:1FFF would have a solicited-node address of FF02:0:0:0:0:1:FFC8:1FFF (or FF02::1:FFC8:1FFF). Key Concept: Each unicast address has an equivalent solicited-node multicast address, which is created from the unicast address and used when other devices need to reach it on the local network.

    41. 41 3.3. IPv6 multicast over Ethernet To send an IPv6 multicast packet over Ethernet, one simply takes the last 32 bits of the destination IPv6 address, prepends 33-33- and uses that as the destination Ethernet address. Thus, an IPv6 packet addressed to FF02::1:FF68:12CB would be sent to the Ethernet address 33-33-FF-68-12-CB. Any host which is interested in packets for that IPv6 address is expected to be listening for the corresponding Ethernet address.

    42. 42 3.4. Neighbour discovery (RFC 2461) Where IPv4 has ARP, IPv6 has NDP, the neighbour discovery protocol. For simple purposes, NDP and ARP are very similar: one node sends out a request packet (called a neighbour solicitation in NDP), and the node it was looking for sends back a reply (neighbour advertisement) giving its link-layer address. NDP is part of ICMPv6, unlike ARP, which doesn't even run over IP. NDP also uses multicast rather than broadcast packets, and that deserves a little more explanation.

    43. 43 For each unicast address it responds to, each host listens on a solicited-node multicast address. The solicited-node multicast address for a given unicast address is constructed by taking the last three octets of the unicast address and prepending FF02::1:FF00:0000/104. Thus, the solicited-node multicast address of 2001:630:200:8100:02C0:4FFF:FE68:12CB is FF02::1:FF68:12CB. It's the solicited-node multicast address that a node uses as the destination of a neighbour solicitation packet. This use of multicast means that most hosts don't get disturbed by neighbour solicitations that aren't either for them or for a host with a very similar IPv6 address.

More Related