1 / 135

Chapter 5 Sex Determination and Sex Chromosomes

Chapter 5 Sex Determination and Sex Chromosomes.

nyoko
Télécharger la présentation

Chapter 5 Sex Determination and Sex Chromosomes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5Sex Determination and Sex Chromosomes Sexual differentiation play an important role in the life cycle of various plants and animals. While single pair of sex chromosome (e.g., the X and the Y ) often plays an important role in determining sexual maturation ,genes present on these chromosomes as well as on autosomes serve as the underlying basis of sex determination. In human, genes on the Y chromosome cause maleness,and in their absence, female development occurs.

  2. Mechanisms have developed to compensate for the dosage of genetic expression in organisms where one sex contains two X,while other has but a single X. In mammals, random inactivation of one of the X chromosomes is the compensatory mechanism. Still other mode of sex determination have evolved. Reptile exemplify environmentally induced sex determination, where temperature during the incubation of eggs is the critical factor.

  3. 雌雄性别是生物的普遍现象之一。从酵母———人类一切生物的共同特征。雌雄性别是生物的普遍现象之一。从酵母———人类一切生物的共同特征。 • 特别是高等动物,雌雄间的差别非常明显。这些差别不仅表现在个别性状上,而且还表现在许多其他性状上,除初级结构外在次级结构中也有明显差别。 • 两性生物中雌雄性别比1:1是一个定值。 • 从遗传学角度讲,性别是按孟德尔方式遗传。1:1是一种测交的结果,indicating one of the two sexes is homozygous and anther is heterozygous. • 哺乳动物的性别形成有两个阶段:遗传学的性别决定(性染色体决定)和生殖腺的性别分化

  4. 性别决定(sex determination) • 性别分化(sex differentiation ) • 性染色体的组成首先决定早期未分化的生殖腺的分化

  5. 5.1 Sexual differentiation and life cycle 5.2 X and Y chromosomes: early studies 5.3 Chromosome composition and sex determination in human 5.4 Sexual differentiation in human 5.5 The sex ratio in humans 5.6 The X Chromosome and Dosage Compensation 5.7 Chromosome Composition and Sex Determination in Drosophlia 5.8 Temperature Variation and Sex Determination in Reptiles

  6. 5.1Sexual Differentiation and life cycle Sexual Differentiation Varies • Multicellular organisms, Primary vs secondary sexual differentiation For plants and animals, • unisexual, dioecious, gonochoric, are equivalent • bisexual, monoecious, hermaphroditic are equivalent • intersex is intermediate (usu. Sterile) • Primary vs secondary sexual differentiation

  7. Chlamydomonas produces haploid isogametes 同形配子only under unfavorable conditions Spend most of their life as haploids

  8. Isogametes are designated mt+ or mt- (mt = mating types)

  9. Seed plants alternate between haploid gametophyte and diploid sporophyte phases

  10. C. elegans • About 1000 cells • There are two sexual phenotypes in these worms: • Males, have only testes, • Mostly hermaphroditic(两性), have testes and ovaries. During larval development of hermaphrodites, testes form that produce sperm, which is stored. Ovaries are also produced, but oogenesis does not occur until the adult stage is reached several days later. The eggs that are then produced are • eggs are self-fertilized with stored sperm • ~ 1% of offspring are male • male x hermaphrodite yields 50/50 ratio

  11. 线虫的性别 0.2% male progeny 50% male progeny

  12. C. elegans sex ratios from various crosses Q: How is sex determined?

  13. 5.2 X and Y chromosomes: early studies(E. Wilson, 1906)Types and Modes of Sex determination • How sex is determined has long intrigued geneticist

  14. 1性染色体与常染色体 性染色体的发现 • 1891年德国细胞学家Henking在半翅目昆虫的精母细胞减数分裂中发现了一种特殊的染色质(实际上是一团异染色质),在一半的精子中带有这种异染色质,另一半没有。当时他对这种异染色质不大理解,并未把它与性别联系起来,因此就起名“X染色体”和“Y染色体” • 直至1902年,美国的McLung第一次把X染色体和昆虫的性别决定联系起来。 • 后来许多细胞学家,特别是Wilson 1906年证明半翅目和直翅目等许多昆虫中

  15. In 1906, Edmund B. Wilson clarified the findings of Henking and McClung when he demonstrated that • Female somatic cells in the insect Protenor contain 14 chromosomes, including 2 X chromosomes. During oogenesis, an even reduction occurs, producing gametes with 7 chromosomes, including 1 X.

  16. Male somatic cells, on the other hand, contain only 13 chromosomes, including a single X chromosome. During spermatogenesis, gametes are produced containing either 6 chromosomes, without an X, or 7 chromosomes, one of which is an X. • Fertilization by X-bearing sperm results in female offspring, and fertilization by X-deficient sperm results in male offspring

  17. [Figure 5-4(a)]. The presence or absence of the X chromosome in male gametes provides an efficient mechanism for sex determination in this species and also produces a 1:1 sex ratio in the

  18. Wilson also • Protenor mode- XX/XO • Female has 14 chromosomes, 2 are X • female makes gametes with 7 chrom.(one X) • Male makes gametes with 6 chrom (no X) • absence of X determines male • Lygaeus mode-XX/XY • Both sexes have 14 chrom. • Females have 2 X • Males have X and smaller Y • Male makes 6A+X or 6A+Y (50/50) • sex ratio 1:1

  19. Protenor mode- XX/XO Figure 5.4 (a) The Protenor mode of sex determination where the heterogametic sex is XO and produces gametes with or without the X chromosome.

  20. Lygaeus mode-XX/XY Figure 5.4 (b) The Lybaeus mode of sex determination, where the heterogametic sex is XY and produces gametes with either an X or a Y chromosome.

  21. XO型性别决定:直翅目昆虫如蝗虫,蟋蟀,蟑螂属于这种类型。雌体的性染色体成对,为XX,雄体只有一条单一的X染色体,为XO。例如蝗虫雌体共有24条染色体,22条常染色体和XX,雄体则为 22+ XO,只有 23条染色体。

  22. Sex chromosome for sex determination • 多数高等植物和低等动物:雌雄同株(体),无性别决定问题 • 高等动物和某些植物:雌雄分体(株), • (1)XY型性别决定:人类、哺乳类、两栖类、鱼类、昆虫、植物

  23. 从进化角度讲,性染色体是由常染色体分化来的。随着分化的逐步加深,同源部分缩小或Y染色体缩短,有的最终消失。如雄蝗虫的染色体最初可能是XY型,进化过程中Y逐渐消失而成为XO型。从进化角度讲,性染色体是由常染色体分化来的。随着分化的逐步加深,同源部分缩小或Y染色体缩短,有的最终消失。如雄蝗虫的染色体最初可能是XY型,进化过程中Y逐渐消失而成为XO型。 • X和Y染色体越原始,它们的同源区段越长,非同源短。 • 同时分化过程中一方面Y染色体上的基因数目逐渐减少,最后变为不含基因的空体或只含少数与性别无关的基因,所以在性别决定中失去了作用(如果蝇) • 另一方面Y染色体与X染色体进一步分化,Y染色体在性别决定中的作用更大(如人类)

  24. 男性Y染色体的短臂上有一个睾丸决定基因,从而具有男性决定的强烈作用, 可使中性状态的性原基分化发育为睾丸而成男性。由于X染色体几乎不起作用,所以只要含有Y,就将发育成男性 • XY正常男性,XXY、XXXY异常男性 • XX正常女性,XO异常女性

  25. The male is not always the heterogametic sex ZZ/ZW (2)ZW型性别决定:鸟类、爬行类、鳞翅目昆虫(家蚕) 这一类的性别决定与XY型相反 雄性:ZZ——同配性别 雌性:ZW——异配性别

  26. (3)植物的性别决定高等植物多为雌雄同株类型,无明显的性染色体决定性别的机制存在。但在少数雌雄异株的植物中,也有与动物相类似的性别决定机制。(3)植物的性别决定高等植物多为雌雄同株类型,无明显的性染色体决定性别的机制存在。但在少数雌雄异株的植物中,也有与动物相类似的性别决定机制。 • 大部分雌雄异株植物都属于雄性异配性别,雌株为XX,雄株为XY。如石竹科的女娄菜(Melandrium apricum),其性别主要取决于 Y染色体的存在与否。在无 Y染色体时,不论X染色体与常染色体(A)的比例如何均发育为雌株,相反,只要有Y染色体存在,无论X和A比例如何,统统发育为雄株。Y染色体有极强的雄性决定作用,带有雄性基因。女娄菜属植物的另一个种(Melandrium album)雄株的 Y染色体比 X染色体稍大一些,两个性染色体在细胞学上差别不大。在减数分裂时,X染色体与Y染色体配对,但分离较早,在常染色体还没有分开的时候,两个性染色体就分向两极了,这表明X染色体与Y染色体的同源部分很少

  27. Genes for sex determination 由复等位基因决定性别 喷瓜(Ecballium elaterium) 基因 决定性别 基因型 aD♂ aDaD,aDa+,aDad a+两性 a+a+,a+ad ad♀ adad

  28. 由二对基因决定 玉米(Zea mays) 基因型 性别 表型 Ba _ Ts _ ♀♂ 顶端长雄花序,叶腋长雌花序 Ba_ tsts ♀ 顶端和叶腋都长雌花序 baba Ts_ ♂ 顶端长雄花序,叶腋不长花序 baba tsts ♀ 顶端长雌花序,叶腋不长花序

  29. 染色体组倍数与性别 • 蜂的性别决定——单倍体性决定 • 不仅与染色体数目有关,而且还与环境有关。 • 蜂王(皇)、雄峰、工蜂(职蜂) • 雄峰 X 雌蜂 —— 卵: • ↓ ↓ • 死掉 得到足够4-5年的精子 • 不受精的卵 发育 雄峰——n=16 • 卵:受精卵 发育 • 雌蜂 食到高质量蜂王浆5天,16天后—— 蜂王 • 仅食到低质量蜂王浆2-3天的,21天后——职蜂

  30. 5.3 Chromosome Compositionand Sex Determinationin Humans Normal female and male

  31. Humans-Y chromosome determines maleness • Embryos are bipotential (Mullerian and Wolffian ducts +undifferentiated gonads) • SRY region encodes TDF

  32. Nondisjunction of Sex chromosomes can cause a number of developmental abnormalities 1 of 1,200Also XXXX, XXXXX 2 of 1,000Also XXXY, XXYY, XXXXY, XXXYY

  33. 染色体病 目前已发现的染色体异常核型达一万多种。 染色体病达100多种。 染色体病是由于染色体数目或结构异常而引起的具有一系列临床症状的综合征。 常染色体病的共同特征: 智力低下、发育迟缓、多发畸形。 性染色体病的共同特征: 性征发育不全或畸形、智力较低。

  34. 常见人类染色体数目异常 综合征 染色体核型 出生率

  35. HUMAN TRISOMY Except for the sex chromosomes, only three trisomies are compatible with life. Sex chromosome polyploidy 性染色体病 性染色体病占所有染色体病的1/3。总发病率为1/500。大多数到青春期因第二性征发育时才显现出症状。 47, XXY (Klinefelter’s syndrome) 45,XO (Turner’s Syndrome) 47,XYY (综合征XYYSyndrome)

  36. abnormal female and male

  37. 47, XXY (Klinefelter’s syndrome) extra X Female phenotype development (micropenis, etc.), mental retardation, disproportionate growth of the legs, and other somatic anomalies, with estimated incidence of 1:500 in newborns. • Klinefelter patients may occasionally demonstrate motile sperms in the ejaculate which is speculated to be due to a mosaic 46, XY cell line.

  38. Klinefelter综合征 1942年 Klinefelter首先发现。又称先天性睾丸发育不全、克氏征。1959年Jacob证实核型为47, XXY。发病率1/1000~1/500。在精神病患者中和收容所中达1/100,不育男性中1/10。 临床表现: 阴茎和睾丸小、身材高、第二性征差、四肢修长、有部分女性特征, 胡须少、无/小喉结、部分伴有尿道下裂和隐睾。1/4患者有乳房发育。纯合体中97%不育,因曲精小管玻璃样变性,无精子。少数有先天性心脏病,大部分患者智力正常或轻度低下。易患糖尿病、甲状腺疾病、哮喘和乳腺癌。 嵌合型中正常细胞比例大时,临床表现轻,可有生育力。 本病纯合体的产生原因1/2是因为父亲第一次减数分裂染色体不分离所致。

  39. Turner’s Syndrome 1938年Turner首先报道,又称先天性卵巢发育不全。1959年Ford证实核型为45, XO 。发病率在女婴中为1/5000,在自发流产中占18%~20%。 临床表现: 性发育幼稚,身材矮小(120m-140m),肘外翻,上眼睑下垂,后发际低,50%有蹼颈,乳间距宽,皮肤色素增多。 55%的病例为纯合型,其他为各种嵌合型和结构异常(如46, X,i(Xq))嵌合型表现轻者可生育。 研究表明,身材矮小和其他体征是由于Xp单体决定;卵巢发育不全和不育则与Xq单体有关。

  40. Turner综合征照片

  41. Y chromosome polyploidy: XYY综合征supermale 1961年Sandburg首次报道,发病率为1/900,核型为47, XYY,发病原因为父亲减数分裂产生了Y染色体不分离。 Estimated incidence is 1:750 newborns, may be fertile with frequent miscarriage of their wives, perinatal death and chromosomal anomalies of their children. 临床表现: 表型一般正常,身材高大,偶见尿道下裂、睾丸发育不良、生育力下降,但大多数可以生育。具有攻击倾向和反社会行为。在监狱中调查发现本病患者较多。

  42. 多X综合征 临床表现:大多数正常,可生育,少数卵巢功能低下、原发或继发闭经、乳房发育不良,1/3患者患有先天性心脏病,部分有精神障碍。2/3患者智力稍低。 X染色体越多智力越低,畸形也越重。 多数为纯合体,少数为嵌合体,均为母方减数分裂染色体不分离。 1959年Jacob首先发现一例47, XXX女性,称为“超雌”。发病率在女婴中为1/1200。

  43. 染色体病的种类还有很多,但很多染色体变异所导致的疾病具有不确定性,既同一种染色体变化导致不同症状,或同一种症状可由不同染色体变异引起。染色体病的种类还有很多,但很多染色体变异所导致的疾病具有不确定性,既同一种染色体变化导致不同症状,或同一种症状可由不同染色体变异引起。 染色体的变化将导致众多基因的变化,在“平衡”变化中,有些没有异常症状,在“不平衡”变化中,大多将导致异常症状。

  44. 怀孕年龄与三体染色体发病率

  45. 5.4 sexual differentiation in human Humans-Y chromosome determines maleness • Embryos are bipotential (Mullerian and Wolffian ducts +undifferentiated gonads) • SRY region encodes TDF • X 156-Mb, 1500 genes • Y 60-Mb, 50 genes (1/2 specialized • for sex and spermatogenesis • Share homology • Pseudoautosomal region (PAR) that recombine at meiosis

More Related