1 / 26

Transformaciones que conservan ángulos

Transformaciones que conservan ángulos w = f ( z ) definida en un dominio D se llama conforme en z = z 0 en D cuando f preserva el ángulo entre dos curvas en D que se intersectan en z 0. Transformación conforme. Si f ( z ) es analítica en el dominio D y f ’( z )  0, entonces

odetta
Télécharger la présentation

Transformaciones que conservan ángulos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transformaciones que conservan ángulos w = f(z) definida en un dominio D se llama conforme en z = z0 en D cuando f preserva el ángulo entre dos curvas en D que se intersectan en z0.

  2. Transformación conforme Si f(z) es analítica en el dominio D y f’(z)  0, entonces f es conforme en z = z0. Demostración Si una curva C en D está definida por z = z(t), entonces w = f(z(t)) es la imagen de la curva en el plano w. Tenemos Si C1 y C2 intersectan en z = z0, entonces:

  3. Puesto que f (z0)  0, tenemos que: Ejemplos: (a) f(z) = ez es conforme en todos los puntos del plano complejo, ya que f (z) = ez no es nunca cero. (b) La función g(z) = z2 es conforme en todos los puntos del plano complejo excepto z = 0, ya que g(z) = 2z 0, para z  0.

  4. Example 2 • The vertical strip −/2  x  /2 is called the fundamental region of the trigonometric function w = sin z. A vertical line x = a in the interior of the region can be described by z = a + it, −  t  . We find that sin z = sin x cosh y + i cos x sinh yand so u + iv = sin (a + it) = sin a cosh t + i cos a sinh t.

  5. Since cosh2t − sinh2t = 1, thenThe image of the vertical line x = a is a hyperbola with  sin a as u-intercepts and since −/2 < a < /2, the hyperbola crosses the u-axis between u = −1 and u = 1. Note if a = −/2, then w = −cosh t, the line x = −/2 is mapped onto the interval (−, −1]. Likewise, the line x = /2 is mapped onto the interval [1, ).

  6. The complex function f(z) = z + 1/z is conformal at all points except z = 1 and z = 0. In particular, the function is conformal at all points in the upper half-plane satisfying |z| > 1. If z = rei, then w = rei+ (1/r)e-i, and soNote if r = 1, then v = 0 and u = 2 cos  .Thus the semicircle z = eit, 0  t  , is mapped onto [−2, 2] on the u-axis. If r > 1, the semicircle z = reit, 0  t  , is mapped onto the upper half of the ellipse u2/a2 + v2/b2 = 1, where a = r + 1/r, b = r − 1/r. See Fig 20.12.

  7. For a fixed value of , the ray tei, for t  1, is mapped to the point u2/cos2−v2/sin2 = 4 in the upper half-plane v  0. This follows from (3) since Since f is conformal for |z| > 1 and a ray  = 0 intersects a circle |z| = r at a right angle, the hyperbolas and ellipses in the w-plane are orthogonal.

  8. Contents • 20.1 Complex Functions as Mappings • 20.2 Conformal Mappings • 20.3 Linear Fractional Transformations • 20.4 Schwarz-Christoffel Transformations • 20.5 Poisson Integral Formulas • 20.6 Applications

  9. 20.1 Complex Functions as Mappings • IntroductionThe complex function w = f(z) = u(x, y) + iv(x, y) may be considered as the planar transformation. We also call w = f(z) is the image of z under f. See Fig 20.1.

  10. Fig 20.1

  11. Example 1 • Consider the function f(z) = ez. If z = a + it, 0  t  , w = f(z) = eaeit. Thus this is a semicircle with center w = 0 and radius r = ea. If z = t + ib, − t  , w = f(z) = eteib. Thus this is a ray with Arg w = b, |w| = et. See Fig 20.2.

  12. Fig 20.2

  13. Example 2 • The complex function f = 1/z has domain z 0 and

  14. Example 2 (2) • Likewise v(x, y) = b, b  0 can be written asSee Fig 20.3.

  15. Fig 20.3

  16. Translation and Rotation • The function f(z) = z + z0 is interpreted as a translation. The function is interpreted as a rotation. See Fig 20.4.

  17. Example 3 Find a complex function that maps −1  y  1 onto 2  x  4. SolutionSee Fig 20.5. We find that −1  y  1 is first rotated through 90 and shifted 3 units to the right. Thus the mapping is

  18. Fig 20.5

  19. Magnification • A magnification is the function f(z) = z, where  is a fixed positive real number. Note that |w| = |z| = |z|. If g(z) = az + b and then the vector is rotated through 0, magnified by a factor r0, and then translated using b.

  20. Example 4 Find a complex function that maps the disk |z|  1 onto the disk |w – (1 + i)|  ½. Solution Magnified by ½ and translated to 1 + i, we can have the desired function as w = f(z) = ½z + (1 + i).

  21. Power Functions • A complex function f(z) = zwhere  is a fixed positive number, is called a real power function. See Fig 20.6. If z = rei, then w = f(z) = rei.

  22. Example 5 Find a complex function that maps the upper half-plane y 0 onto the wedge 0  Arg w  /4. Solution The upper half-plane can also be described by 0  Arg w  . Thus f(z) = z1/4 will mapthe upper half-plane onto the wedge 0  Arg w  /4.

  23. Successive Mapping • See Fig 20.7. If  = f(z) maps R onto R, and w = g() maps R onto R, w = g(f(z)) maps R onto R.

  24. Fig 20.7

  25. Example 6 Find a complex function that maps 0  y   onto the wedge 0  Arg w  /4. Solution We have shown that f(z) = ezmaps0  y   onto to 0  Arg    and g() =  1/4 maps0  Arg   onto 0  Arg w  /4. Thus the desired mapping is w = g(f(z)) = g(ez) = ez/4.

  26. Example 7 Find a complex function that maps /4  Arg z  3/4 onto the upper half-plane v  0. Solution First rotate /4  Arg z  3/4 by  = f(z) = e-i/4z. Then magnify it by 2, w = g() =  2.Thus the desired mapping is w = g(f(z)) = (e-i/4z)2 = -iz2.

More Related