350 likes | 452 Vues
This work explores the nonlinear evolution of Pomeron fields within the semiclassical framework of Quantum Chromodynamics (QCD). We discuss BFKL Pomeron calculus and its application to high-energy scattering processes, particularly in diffractive scattering and nucleus-nucleus collisions. Our analysis includes the treatment of saturation effects and the development of evolution equations for scattering amplitudes. The findings are pertinent for understanding the dynamics of gluon interactions and saturation phenomena in small-x physics, contributing to the broader study of high-energy particle collisions.
E N D
Nonlinear evolution for Pomeronfields in the semi classical C. Contreras , E. Levin J. Miller* and R. MenesesDepartamento de Física - Matemática Universidad Técnica Federico Santa María Valparaiso Chile *Lisboa Portugal SILAFAE 2012 Sao Paulo Brasil
Outlook • Introduction • BFKL PomeronCalculus and RFT • Semiclassicalapproximation • Solutioninsidethesaturationregion • Application and Conclusion
Introduction • High EnergyScattering • DifractiveScattering and DIS : Pomeronexchange • h-h h-NucleusCollision: dilute/dilute - dense sistema • Nucleus - NucleusCollision Dense-Dense systems
Scatteringapproach • d=2 tranversespace • saturación regionQs >> C are smallthenwe can considerthat semiclasicasapproach are valid
Description in QCD • The interactionbetweenparticlesisviainterchange of Gluons: Color Singlet BFKL Pomeron Balinsky-Fadin-Kuraev-Lipatov • Theamplitude can be described considering a Pomeron Green Function BFKL propagator SeeLipatov “ Perturbative QCD”
Where Dipole the wave function hep-th/0110325 • Approximation r, R << b then it is independent of b impact parameter
Balitsky-Fadin-Kuraev-Lipatov BFKL equation describe scattering amplitud in High Energyusing a resumation LLA in pQCD (76-78) • BFKL evolutionequationwithrespecttoln x , which are representedby a set of Gluon ladders • Intuitive Physical Picture: BFKL difussion in the IR region: gluon radiation g -> gg in thetransversemomentumktexistlargenumber of gluons but forsmallkt and largesize of gluon and strongyoverlap fusiongg –> g are important Saturationphenomena
Approchtosaturation First: Modification of the BFKL 1983 GLR Gribov, Levin and Ryskin 1999 BK Balisky- Kovchegov: includequadratictermsdeterminedbythreePomeronVertex BK eq. evolution for Amplitude N(r,b,Y)
See hep.ph 0110325 • BK equation DIS virtual photon on a large nucleus LLA • Dipole approximation: photon splits in long before the interaction with nucleus degrees of freedoms • The dipole interacts independently with nucleons in the nucleus via two-gluon exchange
Approchtosaturation II Color GlassCondensate CGC Clasiccalfieldfor QCD withWeizsacker-Williams generalized Field Muller and Venogapalan JIMWLK / KLWMIJ Equation J. Jalilian-Marian, E. Iancu, Mc Lerran, H. Weiger, A. Leonidovt and A. Kovner RenormalizationGroupApproach in the Y-variable
GeneralizationtoPomeronesInteraction • 1P 2P • 2P 1P • Loop de Pomerones
Pomeron Loops: See E. Levin, J. Miller and A PrygarinarXiv 07062944 For example: See Quantum Chromodynamic at High Eneregy Y. Kovchegov and E. Levin Cambridg 2011 • BK resums the fan diagrams with the BFKL ladders Pomeron splitting into two ladders (GLR-DLA) • Loops of Pomeron are suppresed by power of A atomic number of the nucleus A
QCD results and effectiveaction • Green Function • Definition of a Field Theory RFT See M. Braun or E. Levin
Interaction with nucleus target / projectile
Solutions: momentumrepresentation
Equations and definitions Thisequationisequivalentto: • BFKL if • BK
equations • Solution: Characteristicamethod
Using the relation BFKL Pomeron L. Gribov, E. Levin and G. RyskinPhy. Rep. 100 `83 • One can show that • And that
We introduce • And we use de condition
NumericalSolution • Expandingaround
Conclusion • Physical Condition to select solution • Extension to Y dependence • AplicationtoScatteringdilute-Dense Nucleus • Applications: Scattering amplitude • In a more refined analysis the b dependence should be taken into account • Running coupling effects sensitivity to IR region and landau Pole! • Solution in another regions
Kinematic Variables • Q resolutionPower • X measure of momentumfraction of struck quark • F(x,Q)
General Behaviour • Bjorken Limites DGLAP • Regge Limite