Download
lepton number and lepton flavour violation n.
Skip this Video
Loading SlideShow in 5 Seconds..
Lepton Number and Lepton Flavour Violation PowerPoint Presentation
Download Presentation
Lepton Number and Lepton Flavour Violation

Lepton Number and Lepton Flavour Violation

138 Vues Download Presentation
Télécharger la présentation

Lepton Number and Lepton Flavour Violation

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Lepton Number and Lepton Flavour Violation Search for Majorana neutrinos in B-decays , lepton flavour violation in- --+ and baryon number violationwith LHCb seen Paul Seifert's talk today LHCb collaboration 54 institutions, 15 countries

  2. Introduction Lepton Number Violation • No known symmetry associated with Lepton Number Conservation. • Gauge symmetry is behind electric charge conservation. • New Physics models such as those with Majorana neutrinos, • or LR symmetric models with doubly charged Higgs boson • can violate LN conservation.LHCb has searched for B-  +- - • and B-  K+- - Phys. Rev. Lett. 108, 101601 (2012) • Such decays have previously been searched for: • - Ξ-pμ-μ-HyperCP • D. Rajaran et al. Phys. Rev. Lett. 94, 181801 (2005) • - Bhe+μ-, he+e+, he+μ+,hμ+μ+ h=π,K,ρ,K* CLEO • K.W. Edwards et al. Phys. Rev. D65, 111102 (2002) • - 0νββ excellent review: • J. J. Gomez-Cadenas et al. Riv. Nuovo Cimento 35, 29 (2012) • - pp  (e+e+,e+μ+,μ+μ+) + X , high mass SS dileptons ATLAS • G. Aad et al. J. High Energy Phys. 10 (2011) 107.

  3. LHCb detector overview and performance Search for B-  +- - , B-  K+- - , B-  Ds+( ϕ(K+K-)π+ )-- B-  D+(K-+π+)-- , B-  D*+(D0+)- - , B-  D0(K-+)+- -

  4. B+ K μ+ μ- d~1cm B-Vertex Measurement B0 → J/Ψ (μ+μ-) K+ s(t) ~40 fs Primary vertex Proper-time resolutionst= 40 fs Vertex Locator (VELO) • Vertexing: • trigger on impact parameter • measurement of decay distance (time)

  5. Momentum and Mass measurement : Tracker OT TT LHCb [LHCb-CONF-2011-049] IT 8276 signal TT • TT and Inner Tracker: silicon micro-strips ~ 200 μm pitch. 12 m2 of silicon 4 layers with (0º, +5º,-5º, 0º) stereo angle. • Outer Tracker: drift chamber with 5 mm diameter straws gas Ar/CO2/O2 (70:28.5:1.5). • Resolution: D p/p= 0.4–0.8% (2–100 GeV/c). • Bs J/yf selection (J/y  m+m-, f  K+K-):s(mB) = 7 MeV/c2 (LHCb). • ~ 20 MeV/c2 (ATLAS/CMS) yields/pb-1 and S/B lower.

  6. Particle Identification RICH: K/p identification using Cherenkov light emission angle Bs → Ds K ,K Bs KK : 96.77 ± 0.06% pK : 3.94 ± 0.02% K K Ds  Primary vertex btag  RICH1: 5 cm aerogel n=1.03 , 4 m3 C4F10 n=1.0014 Pure sources of K and π given by D*+D0π+ , D0K-π+ RICH2: 100 m3 CF4 n=1.0005

  7. Particle identification: Calorimeters and L0 trigger e h ECAL (inner modules): σ(E)/E ~ 8.2% /√E + 0.9% • Calorimeter system : • Identify electrons, hadrons, π0 ,γ • Level 0 trigger: high ET electron and hadron

  8. Muon identification and L0 trigger B+ K μ+ μ- d~1cm m • Muon system: • Level 0 trigger: High Pt muons • pure muon sample from J/Ψ μ+μ- • μ-ID requirement applied to only one Primary vertex

  9. Search for Lepton Number Violation at LHCb Impressive limits to date from nuclear 0- decay on electrons: O(1025) years. Yet heavy quark mesons could undergo the same process with muons: Phys. Rev. D 85, 11204 (2012) arXiv:1201.5600v2 Virtual Majorana neutrino a) Resonant neutrino production b) Vub b c - Annihilation W-  N c) W- New - ¯ Vcb ¯ u d Also resonant production

  10. Limits from B-factories Belle results on B  D+l-l- Based on 772106 BB events at (4s), collected with the Belle detector at KEKB • BaBar results on B  h+l-l- with h=K, • Based on 471106 BB events at (4s), collected with • the BaBar detector at SLAC • Event selection similar to other B analysis. B mass and energy • calculated in center of mass system using Ebeam constraint

  11. Analysis general aspects Phys. Rev. Lett. 108, 101601 (2012) Phys. Rev. D 85, 112004 (2012) • Search for the decays • B-  +- - , B-  Ds+- - , B-  D+- - , B-  D*+- - , B-  D0+- - • using 0.41 fb-1 • Neutrinos are assumed to have a very narrow width compared to detector resolution. • Limits calculated asuming phase space, and also as function of neutrino mass • Signal yields are normalised to B channels with known branching fractions with • the same number of muons in 3-body and 5-body final states B- J/ K- J/  +- B- (2s) K- (2s)  + - J/ Total efficiency + - K- : 0.99  0.01 % Total efficiency + - + - K- : 0.078  0.002 %

  12. Majorana neutrinos B- +- - • B-  +- - • K// misid rates from D* +D0(K-+) • K0s and J/   • Peaking background from misid • B-  J/ K- and B-  J/- (2.5 evts) • Combinatorial background from • fit to the sidebands (5.3 evts) • Many systematics cancel in ratio to • normalisation channel

  13. Majorana neutrinos B- D+(*)- - Phys. Rev. D 85, 112004 (2012) • B-  D+- - , B-  D*+- - • Total efficiencies are 0.099  0.007 % and 0.066  0.005 % • D+ reconstructed via decay to K  , D*+ reconstructed via D0( K) • Any value of MN (virtual neutrinos) 6 evts 6.9  1.1 backg. 5 evts 5.9  1.0 backg. Total systematics : 8.8 % (D+ ) , 8.2 % (D*+) Dominated by branching ratios of normalization channels and trigger efficiencies Limits determined using and taking the vaue in which such probability is 0.05 (95 % C.L.)

  14. Mass and lifetime acceptance for on-shell Majorana neutrinos Finite neutrino lifetimes ignored so far (except for off-shell production) Sensitivity is lost for lifetimes longer than 10-10s to 10-11s. Mass resolution Neutrino mass acceptance B-+-- B- Ds+-- B- D0+--

  15. Systematic uncertainties for B-  DX--

  16. Systematic uncertainties for B- +- -

  17. B- Ds+- - and B- D0 +- - • B-  Ds+- - • Ds reconstructed via • decay to KK • Heavy neutrino can • decay to Ds+- • Ds+ decay tracks form a • vertex with - candidate • then a detached vertex • with second - (B-) • B-  D0+- - • D0 reconstructed via • decay to K • MN spectra consistent • with polynomial backgs. • estimated from sidebands MN Phys. Rev. D 85, 112004 (2012)

  18. Mass-dependent Majorana neutrino limits B-  +- - B-  Ds+- - B-  D0+- - • Upper limits (95% C.L.) are set at • each MNmass by searching a signal • within  3N in small steps. Phys. Rev. D 85, 112004 (2012) • For B-  D+(*)- - , limits • on the coupling require calculation • of hadronic form factor • (as for 0 decay) . • A model dependent calculation2 • was used for B- D0+-- , but • the mode +-- is more sensitive. 2 D. Delepine, G. Lopez Castro, and N. Quintero, Phys. Rev. D84 (2011) 096011, arXiv:1108.6009.

  19. Limits on Majorana coupling |V4 | Phys. Rev. D 85, 112004 (2012) B-+-- B   LHCb Mass dependent upper limits on the coupling |V4 | of a 4th generation Majorana neutrino to a muon and virtual W 1. 1A. Atre, T. Han, S. Pascoli, and B. Zhang, JHEP 05 (2009) 030, arXiv:0901.3589.

  20. Summary on LNV in B decays a BaBar,Phys. Rev. D 85, 071103 (2012) b CLEO, Phys. Rev. D 65, 111102 (2002) c Belle, Phys. Rev. D 84, 071106(R), (2011) d LHCb, CERN-PH-EP-2012-006, arXiv:1201.5600 (2012) e LHCb, Phys. Rev. Lett. 108 101601 (2012)

  21. Summary of LNV and LFV at LHCb • neither lepton number violation nor lepton flavour violations • observed yet • heavy quark and lepton decays provide good probes for • Lepton Number & Flavour Violation. Excellent sensitivity achieved • at B factories. • LHCb extends knowledge on forbbiden B decays • in LNV processes to 10-6…-8, establishing best limits on the coupling • |V4| of a 4th generation N to W, using B   • LHCb is approaching B factories for   • first measurement at hadron colliders: < 7.8 × 10-8 95% C.L. • LHCb has set limits ( 10-7)for the first time on  (B –L) = 0 • decays - p̅-+and - p-- Only up to 1.0 fb-1 used by LHCb, currently 3.0 fb-1 on tape

  22. THANKS

  23. Limits from B factories