1 / 57

Animal Adaptations Arthropods Biological Control (Integrated Pest Management)

Animal Adaptations Arthropods Biological Control (Integrated Pest Management). Animal Adaptations. Correlations of life choices with structural and physiological changes. Things to think about. Why choose? = competition – or avoiding it. . Reproductive cycles.

Télécharger la présentation

Animal Adaptations Arthropods Biological Control (Integrated Pest Management)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Animal AdaptationsArthropodsBiological Control (Integrated Pest Management)

  2. Animal Adaptations Correlations of life choices with structural and physiological changes. Things to think about Why choose? = competition – or avoiding it.

  3. Reproductive cycles • All adults are diploid – haploid cells are egg and sperm only. • Egg almost always bigger (heterogamy) • Primitive – both egg and sperm released for external fertilization • Advanced – egg retained, sperm released • The fertilized egg (outside body) or a structure to produce eggs and sperm can be dispersal phase.

  4. Coral life cycle. The medusa (like a jellyfish) is diploid, but male or female or both. Meiosis in it produces eggs and sperm – planula is a dispersal phase

  5. Issues with reproduction (for each choice- what are the pros and cons.) • How many young?? (How many needed??) • Size of eggs? • Altricial vs precocial • Parental care • Retain egg in mother until hatching. What affects the choices? • R vs K species – life span • Life history – are parents around??

  6. Sessile vs motile? Which systems affected? What limits placed on where you live- why?

  7. Sessile living: sponge, corals, Reproduction: sexual, motile sperm find egg, but also cloning (asexual) plus regeneration Food; in water, mostly ocean (why?) Dispersal: larvae with flagella. Protection: regeneration, spicules

  8. Symmetry: assymetric vs radial, bilateral Which leads to what systems? Nerves and senses and brain concentration.

  9. One of the major senses: Light sensitivity Nearly all cells have it – goes back to bacteria. Higher animals – special light sensory devices – function detect light – use for clocks – telling seasons, etc. detect movement only - protection identify shape; - leads to memory. How to take an image – break it into bits of information – transmit to brain for storage and processing? Note: diurnal vs nocturnal diurnal ; shape perception = eyes nocturnal: -vision – see movement, not shape. shape perception in dark = radar, sonar – bats and porpoises

  10. What if you are motile and can’t find a mate? Under what conditions is this likely to occur?? Parasites in body

  11. Whiptail lizards, among others Parthenogenesis = egg develops without fertilization. Why here? (are males that repulsive?)

  12. Multicellularity - size What systems required to gain in size? Why? Circulation, respiration, excretion, skeleton

  13. Skeleton – a requirement of size External Internal Hydrostatic Limitations of each?

  14. Hydrostatic Muscles compress compartments – push the worm forward. Setae(spines) hold portions of body to ground.

  15. Note cross – sectional diameter.

  16. respiration Aquatic • Through skin if small • Gills if bigger (large surface area in water) Terrestrial keep wet gills lungs insects – spiracles.

  17. Large surface area in contact with environment – skin respiration

  18. Crab gills – feathery under surface for protection Fish gill structure – large surface area

  19. Terrestrial vs aquatic: Which systems affected? As with plants. How to avoid drying out How to breathe – get oxygen.

  20. Feeding types: Filter feeder Herbivore Carnivore Omnivore Specialized food; molluscs, fish, ants, Which feeding type leads to: more active life? being clever? larger population size?

  21. Cold vs warm blooded: - what are the advantages, disadvantages of each? What conditions might favor the development of warm bloodedness?

  22. Figure 40.9 Ectotherms and Endotherms React Differently to Environmental Temperatures (A)

  23. Mammals as maxitherms.

  24. How to deal with harsh conditions? Like a plant: - survive as egg (seed) - adapt (fur, evaporative cooling, etc) New means: -migration – avoid bad conditions -hibernation

  25. Allen’s rule; larger extremities in warmer climates

  26. Arthropods

  27. Butterflies and moths beetles Bees, ants, wasps

  28. Trilobites – stem group, marine

  29. External skeleton

  30. Metamorphosis vs incomplete metamorphosis.

  31. Why insects so successful? • r species – adaptable • extreme specialists • live in water, land and air • flight • excellent nervous systems • life cycle; larval feeding. • all food types, plant, animal, scavenger, predator, etc. • many have social behavior

  32. Insects as pests • diseases – carriers of protozoa, bacteria • crop pests – direct effects or carriers of fungi, etc.

  33. How to deal with insects • Pesticide -Insecticide: a chemical that kills all insects, but they develop resistence, and some like DDT harm other organisms • Biological control: Know your enemy and find a chink in their life cycle; four examples. Problem – kills only the target insect.

  34. Find a natural parasite or disease of the pest. Breed it, and release it into the environment Here parasitic wasps lay eggs on caterpillars, kill them so they won’t eat a crop.

  35. Screw worm fly

  36. Screw worm eradication • Females only mate once • Can’t tell difference between sterile and fertile males • Can sterilize with radiation So: knock the population down with pesticide release a lot of sterile males 10-100 for each fertile male get rid of flies in one year. prevent reintroduction

More Related