1 / 24

Gliederung

Gliederung. Populäre Einführung I: Astrometrie Populäre Einführung II: Hipparcos und Gaia Wissenschaft aus Hipparcos-Daten I Wissenschaft aus Hipparcos-Daten II Hipparcos: Technik und Mission Astrometrische Grundlagen Hipparcos Datenreduktion Hauptinstrument

payton
Télécharger la présentation

Gliederung

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gliederung • Populäre Einführung I: Astrometrie • Populäre Einführung II: Hipparcos und Gaia • Wissenschaft aus Hipparcos-Daten I • Wissenschaft aus Hipparcos-Daten II • Hipparcos: Technik und Mission • Astrometrische Grundlagen • Hipparcos Datenreduktion Hauptinstrument • Hipparcos Datenreduktion Tycho • Gaia: Technik und Mission • Gaia Global Iterative Solution • Wissenschaft aus Gaia-Daten • Sternklassifikation mit Gaia • SIM und andere Missionen

  2. Gaia: Wissenschaft

  3. GAIA: spatial distributions, motions, physical properties 1 billion stars to V=20 Key objective: composition, formation and evolution of the Galaxy Plus: thousands of other objectives

  4. Which stars can be observed ? Limit for 10-percent parallax

  5. Ergebnisse der Gaia-Mission (Schätzungen): Stern-Entfernungen auf 10 %: 150 Millionen (HIP: 21000) 1 %: 20 Millionen (HIP: 100 ?) 0.1 %: 1 Million (HIP: keine) Veränderliche Sterne: 50 Millionen (HIP: 8000) Astrometr. Doppelsterne: 100 Millionen (HIP: 3000) davon mit Bahnen: 100 000 (HIP: 235) Direkte Sternmassen auf 1%: > 10 000 (bisher ein paar Dutzend ? ) Weiße Zwerge: 200 000 (bisher ein paar hundert?) Braune Zwerge: 50 000 (bisher ein paar Dutzend) Planetensysteme: 50 000 (bisher 120) Supernovae: 100 000 (bisher einige tausend) Kleinplaneten: 500 000 ? (bisher 65 000) Relativitätstheorie auf 0.5 10-6 (bisher 50 10-6, oder 10 10-6 ? ) Vollständige Sternzählungen, genaue Sternzählungen, überall.

  6. 4000 4000 2000 2000 Heliocentric y coordinate Heliocentric y coordinate 0 0 -2000 -2000 -4000 -4000 -4000 -2000 0 2000 4000 Heliocentric x coordinate (pcs) -4000 -2000 0 2000 4000 Heliocentric x coordinate (pcs) Simulation of the Galactic plane (50000 OB stars) Photometric distances Gaia distances (Drimmel, Smart & Lattanzi, 1997)

  7. Halo accretion (Harding image) Halo Accretion(simulation: P. Harding)

  8. Tidal Streams in the Galactic Halo(simulation of accretion of 100 satellite galaxies)  GAIA will identify details of phase-space substructure

  9. Nebenbemerkung: kinematische Strukturen lassen sich sogar ganz ohnekinematische Daten entdecken. Beispiel: Gezeitenschwänze von Palomar 5,nur aus Mehrfarbenphotometrie mit Sloan Digitized Sky Survey. Gaia ist also nichtauf die Sterne mitguten Parallaxenbeschränkt. Mehrfarbenphoto-metrie gibt‘s füralle 109 Sterne! Odenkirchen et al., in:

  10. Example performance distance precision to members of the Hyades cluster Ground Hipparcos GAIA

  11. Binary and Multiple Stars • Constraints on star formation theories • Orbits for > 100,000 resolved binaries (separation > 20 mas) • Masses to 1% for > 10,000 objects throughout HR diagram • Full range of separations and mass ratios • Interacting systems, brown dwarf and planetary companions Photocentric motions: ~108 binaries Photometry: >106 eclipsing binaries Radial velocities: >106 spectroscopic binaries

  12. Astrometric detection of extra-solar planets : Solar motion at 100 pc Planet B Star 10 mas = hairwidh at 1000 km !

  13. Extra-solar planets: detection domainsfor astrometryand for radialvelocity

  14. Expected Exo-Planet Astrometric Discoveries • Monitoring of hundreds of thousands of F-G-K stars to 200 pc for 1MJ planets and P < 10 years: • complete census of all stellar types (P = 2-9 years) • masses, rather than lower limits (m sin i) • Large-scale detection and physical characterisation: 20,000- 30,000 planets expected to 150-200 pc e.g. 47 UMa: astrometric displacement 360 as • orbits for many (5000) systems (~ 30% to 100 pc) • mass down to 10 MEarth to 10 pc

  15. I HD 209458 - ap = 0.045 UA 1.00 0.99 0.98 Charbonneau et al., 1999 -0.1 days 0.1 P t t Photometric detection of extra-solar planets : transits I  0 inclination Central Efficiency unaltered by distance !

  16. GAIA: Studies of the Solar System Deep and uniform detection of all moving objects: • complete to 20 mag (well, not really, due to scanning law) • discovery of ~105 - 106 new objects (65,000 presently known) • taxonomy and mineralogical composition versus heliocentric distance • diameters for ~1000 asteroids • masses for ~100 objects • orbits: 30 times better than present, even after 100 years • Trojan companions of Mars, Earth and Venus • Kuiper Belt objects: ~300 to 20 mag + binarity + Plutinos • Near-Earth Objects: • e.g. Amors, Apollos and Atens (442: 455: 75 known today) • ~1600 Earth-crossing asteroids > 1 km predicted (100 currently known) • GAIA detection: 260 - 590 m at 1 AU, depending on albedo

  17. General Relativity/Metric • From positional displacements: •  to 510-7(cf. 10 -5presently)  scalar-tensor theories • effect of Sun: 4 mas at 90o; Jovian limb: 17 mas; Earth: ~40 as • From perihelion precession of minor planets: •  to 310-4 - 310-5 (10-100 better than lunar laser ranging) • Solar J2 to 10-7 - 10-8 (cf. lunar libration and planetary motion) • From white dwarf cooling curves: • dG/dT to 10-12 - 10-13 per year (cf. PSR 1913+16 and solar structure) • Gravitational wave energy: 10-12 < f < 10-9 Hz • Microlensing: photometric (~1000) and astrometric (few) events • Cosmological shear and rotation (cf. VLBI)

  18. Nebenbemerkung: Die Robertson-Parameter Sie modifizieren die Metrik um einen kugelymmetrischen Körper gegenüber der Allgemeinen Relativitätstheorie (ART): ART besagt: Brans-Dicke (eine alternative Gravitationstheorie) besagt: wobei w ein freier Parameter der Theorie ist Die klassischen Tests der ART: light bending ~(g+1)/2, radar delay ~(g+1)/2, geodetic precession of orbitinggyros ~(2g+1)/3, perihelion precession of planets ~(2-b+2g)/3. -> Gaia kann g und b bestimmen.

  19. Light Bending by Solar System Bodies

  20. Defining sources (212) Candidate sources (294) Other sources (102) ICRF: Source distribution

More Related