1 / 35

學生:江柏誼 指導教授:于淑君 博士

Thioacetalization. Synthesis and Structural Characterization, of Nickel(II) Complexs Supported by Aminodipyridylphosphine Oxide Ligand. The Catalytic Application to Thioacetalization of Aldehyde. 學生:江柏誼 指導教授:于淑君 博士. Corey-Seebach Reaction. Base. n=2-6. n=2-6.

petra
Télécharger la présentation

學生:江柏誼 指導教授:于淑君 博士

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Thioacetalization Synthesis and Structural Characterization, of Nickel(II) Complexs Supported by Aminodipyridylphosphine Oxide Ligand.The Catalytic Application to Thioacetalization of Aldehyde 學生:江柏誼 指導教授:于淑君 博士

  2. Corey-Seebach Reaction Base n=2-6 n=2-6 Seebach, D.; Jones, N. R.; Corey, E. J. J. Org. Chem. 1968, 33, 300-105.

  3. Acetalization and Thioacetalization of Carbonyl Compounds

  4. The Earlier Catalyst for Thioacetalization J.W. Ralls, et. al., J. Am.Chem. Soc.1949, 71, 3320-3325

  5. HCl Catalyzed Thioacetalization Robert Ramage, et. al., J. Chem. Soc., Perkin Trans. 11984, 71, 1547-1553.

  6. Lewis Acid CatalyzedThioacetalization • Conventional Lewis Acids BF3-Et2O、ZnCl2、AlCl3、SiCl4、LiOTf、InCl3 Nakata, T. et. al., Tetrahedron Lett. 1985, 26, 6461-6464. Evans, D. V. et. al., J. Am. Chem. Soc. 1977, 99, 5009-5017. Firouzabadi, H. et. al., Bull. Chem. Soc. Jpn.2001, 74, 2401-2406. • Transition Metal Lewis Acids TiCl4、WCl6、CoCl2、Sc(OTf)3、MoCl5、NiCl2 Kumar, V. et. al., Tetrahedron Lett. 1983, 24, 1289-1292. Firouzabadi, H. et., al. Synlett 1998, 739-741. Goswami, S. et. al., Tetrahedron Lett.2008, 49, 3092-3096. • Lanthanide Metal Lewis Acids Lu(OTf)3、 Nd(OTf)3 Kanta, D. S. J. Chem. Res. Synop. 2004,230-231. Kanta, D. S. Synth. Commun. 2004, 34, 230-231.

  7. BF3-Et2O Catalyzed Thioacetalization Paulo J.S. Moran. J. Organomet. Chem. , 2000, 603, 220-224 One use only

  8. MoCl5 or MoO2Cl2 Catalyzed Thioacetalization One use only S. Goswami, A. C. Maity . Tetrahedron Letters, 2008, 49, 3092–3096

  9. 5 mole% CoCl2 1hr 91 % One use only CoCl2Catalyzed Thioacetalization Surya Kanta De. Tetrahedron Letters, 2004, 45, 1035–1036

  10. Nickel(II) Chloride CatalyzedThioacetalization 10 mole % NiCl2 2.5 hour 96 % One use only A. T. Khan et al., Tetrahedron Lett.2003, 44, 919–922

  11. Motivation 1.Traditional high valent metal halide Lewis acids are difficult to handle ex. MCln ,M=Zn、W、Co、Mo….. 2.Nickel is less expensive than other transition metal NiCl2 50g $ 29.2 WCl6 100g $ 152.5 PdCl2 25g $ 849 NIBr2 50g $ 72.2 W(CO)6 50g $ 176 3.(DME)NiBr2 as preferable precursor not (DME)NiCl2 [HO(CH2)11N(H)P(O)(2-py)2]NiBr2 &[HO(CH2)11N(H)P(O)(2-py)2]NiCl2 4.Use HO(CH2)11N(H)P(O)(2-py)2 as chelate ligand [HO(CH2)11N(H)P(O)(2-py)2]NiBr2

  12. Comparison of M2+(d8 species) Square Planar vs. Tetrahedral Complexes • Ni => small Δo => tetrahedral & square planar • Pd & Pt => large Δo => square planar • Ligands => large , weak-field => tetrahedral • Ligands => small, strong-field => square planar

  13. Square Planar - Tetrahedral Isomerism of Nickel Halide Complexes of Ni(PPh2R)2X2 • The tetrahedral structure is increasingly favored in the orders • PPh2R:P(C2H5)3 < P(C2H5)2C6H5 < PC2H5(C6H5)2 < P(C6H5)3 • X : Cl < Br < I R. G. Hayter, F. S. Humiec. Inorg. Chem. 1965, 12, 1701-1706.

  14. Preparation of Aminodipyridylphosphine Oxide Ligand 93 % 1 75 % 2

  15. Preparation of Nickel(II) Complex Catalyst 2 3 76 % Paramagnetic

  16. Chemical Shift of Paramagnetic Compounds for NMR due to the paramagnetic center presence δobserved =δdiamagnetic + δhyperfine δdiamagnetic =diamagnetic shift corresponds to the values for the free ligand. δhyperfine =δcontact + δdipolar δcontact = contact shifts are caused by spin delocalization of the unpaired electrons through chemical bonds (through bond) δdipolar= dipolar shifts, between the paramagnetic center and the nucleus of interaction (through space) Major Broad signal J. Phys. Chem. A, 2003, 107, 5821-5825

  17. Square planar Tetrahedral

  18. IR of [HO(CH2)11N(H)P(O)(2-py)2]NiBr2 HO(CH2)11N(H)P(O)(2-py)2 [HO(CH2)11N(H)P(O)(2-py)2]NiBr2 1569 cm-1 1428 cm-1 1593 cm-1 1430 cm-1

  19. EPR of HO(CH2)11N(H)P(O)(2-py)2]NiBr2 g = 2.18 g=2

  20. SUQID of HO(CH2)11N(H)P(O)(2-py)2]NiBr2 χ = m / H χm = (χ / W) × M μeff = (3k / Nβ2)1/2(χmT)1/2 = 2.828(χmT)1/2 m :磁矩, H :外加磁場 (10000 guess), χ:磁化率 χm:莫耳磁化率, W:樣品重量, M:樣品分子量 μeff:有效磁矩, T : 溫度, β:波耳磁元 K :波茲曼常數, N:6.02 x 1023 slope = 1/(χmT) = 0.936 χmT = 1/0.936 μeff = 2.828 (χmT)1/2 μeff = 2.92

  21. HO(CH2)11N(H)P(O)(2-py)2]NiBr2 μeff = 2.92 Tetrahedral The Organometallic Chemistry of The Transition Metals. 2005

  22. FAB-MS of HO(CH2)11N(H)P(O)(2-py)2]NiBr2 HO(CH2)11N(H)P(O)(2-py)2]NiBr+ = 528 m+/Z

  23. Nickel Lewis Acids Complex CatalyzedThioacetalization = Thiol =

  24. Comparison of Catalytic Activity Amoung Various Different Catalyst

  25. Proposed Mechanism δ (3)

  26. Recyclable Nickel(II) Complex Catalyst for Thioacetalization of Aldehyde 1H NMR  Solvent= CDCl3 (0.01478M 4-Iodoanisole)

  27. NiBr2(DME) Near FutureWork for Nickel(II) Complex • Immobilization onto AuNPs surfaces Cat.

  28. Conclusions 1.We have successfully synthesized an air- and water-stable and efficient catalyst { [HO(CH2)11NHPOpy2]NiBr2}. 2. We use 1H NMR、 FT-IR、EPR、SQUID and FAB-MS for structural characterization of Nickel(II) complex, we have proved the compound demonstrated that it is a paramagnetic tetrahedral compound, and we will proceed detection of Elemental Analysis (EA). 3.In Ni-catalyst series, the Nickel(II) complex only can be reused for catalytic of thioacetalization of aldehyde many times without any loss of reactivity.

More Related