130 likes | 164 Vues
3-3. Proving Lines Parallel. Warm Up. Lesson Presentation. Lesson Quiz. Holt McDougal Geometry. Holt Geometry. Objective. Use the angles formed by a transversal to prove two lines are parallel. Example 1A: Using the Converse of the Corresponding Angles Postulate.
E N D
3-3 Proving Lines Parallel Warm Up Lesson Presentation Lesson Quiz Holt McDougal Geometry Holt Geometry
Objective Use the angles formed by a transversal to prove two lines are parallel.
Example 1A: Using the Converse of the Corresponding Angles Postulate Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. 4 8 4 8 4 and 8 are corresponding angles. ℓ || mConv. of Corr. s Post.
Example 1B: Using the Converse of the Corresponding Angles Postulate Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. m3 = (4x – 80)°, m7 = (3x – 50)°, x = 30 m3 = 4(30) – 80 = 40Substitute 30 for x. m8 = 3(30) – 50 = 40 Substitute 30 for x. m3 = m8 Trans. Prop. of Equality 3 8 Def. of s. ℓ || m Conv. of Corr. s Post.
Example 2A: Determining Whether Lines are Parallel Use the given information and the theorems you have learned to show that r || s. 4 8 4 8 4 and 8 are alternate exterior angles. r || sConv. Of Alt. Int. s Thm.
Example 2B Continued Use the given information and the theorems you have learned to show that r || s. m2 = (10x + 8)°, m3 = (25x – 3)°, x = 5 m2 + m3 = 58° + 122° = 180°2 and 3 are same-side interior angles. r || sConv. of Same-Side Int. s Thm.
Example 3: Proving Lines Parallel Given:p || r , 1 3 Prove: ℓ || m
Example 3 Continued 1. Given 1.p || r 2.3 2 2. Alt. Ext. s Thm. 3.1 3 3. Given 4.1 2 4. Trans. Prop. of 5. ℓ ||m 5. Conv. of Corr. s Post.
Example 4: Carpentry Application A carpenter is creating a woodwork pattern and wants two long pieces to be parallel. m1= (8x + 20)° and m2 = (2x + 10)°. If x = 15, show that pieces A and B are parallel.
Example 4 Continued A line through the center of the horizontal piece forms a transversal to pieces A and B. 1 and 2 are same-side interior angles. If 1 and 2 are supplementary, then pieces A and B are parallel. Substitute 15 for x in each expression.
Example 4 Continued m1 = 8x + 20 = 8(15) + 20 = 140 Substitute 15 for x. m2 = 2x + 10 = 2(15) + 10 = 40 Substitute 15 for x. m1+m2 = 140 + 40 1 and 2 are supplementary. = 180 The same-side interior angles are supplementary, so pieces A and B are parallel by the Converse of the Same-Side Interior Angles Theorem.