580 likes | 797 Vues
XRD polykrystalické tenké vrstvy. Conventional Bragg-Brentano symmetric geometry – θ /2 θ scan Asymmetric BB geometry – θ /2 θ scan Parallel beam geometry – 2 θ scan. Phase analysis Lattice parameters Size, strain Texture. Bragg-Brentano conventional powder diffraction geometry.
E N D
XRDpolykrystalické tenké vrstvy • Conventional Bragg-Brentano symmetric geometry – θ/2θ scan • Asymmetric BB geometry – θ/2θ scan • Parallel beam geometry – 2θ scan Phase analysis Lattice parameters Size, strain Texture
Bragg-Brentano conventional powder diffraction geometry Symmetric - 2 scan h3k3l3 3 h2k2l2 2 1 h1k1l1 Information from the grains oriented with the corresponding planes parallel to the surface
Absorpce a b Lineární absorpční koeficient a b Energie z hloubky t za 1 s
Asymmetric powder diffraction geometry 3 2 scan Small constant angle of incidence g h3k3l3 h2k2l2 2 h1k1l1 1 Parallel beam g = 2 – 10 Picture from Seifert poster
XRD Seifert - FPM Monochromator Detector Slits Parallel plate collimator X-ray tube Sample holder
C. Bragg-Brentano asymmetric powder diffraction geometry - 2 scan h3k3l3 -goniometer 3 h2k2l2 2 h1k1l1 1 Y-goniometer Texture Stress
Philips X’Pert MRD Eulerian cradle Sample stage X-ray tube Parallel plate collimator Goebel mirror Polycapillary Detector
Omega sken FWHM Korekce na absorpci a defokusaci
2D reciprocal space scan q-2q scan 2q 2q scan q scan Ideal single crystal Ideal polycrystal Textured polycrystal q 0
Zbytková napětí Homogenní napětí 1.druhu(s). Může být určováno přímo známou metodou sin2y, kdy musí být vzorek nakláněn na různé úhlyy ze symetrické polohy tak, aby difraktovaly atomové roviny různě skloněné vůči povrchu. Uvedený výraz platí přesně pouze pro jednoosá napětí (y = 0 pro symetrickoul Braggovu-Brentanovu geometrii). Rtg elastické konstanty Elasticky izotropní materiály Elastická anizotropie + Reussův model ( s = konst. maximální závislost nahkl ) n … Poissonovočíslo, E … Youngův modul tlakovénapětí 222 311 a 111 311 400 200 a0 Hodnota bez napětí cos q cot q Back
2 sken 422 422 goniometr goniometr
Crystallite Group Method BB - y = 0 BB - y = y0 For thin films and some bulk materials the orientation of grains with respect to the surface may be very important. Differently oriented grains can have very different defect content and/or be in very different stress state. Therefore it is desirable to measure various crystallite families (texture components) rather than individual planes. Of course, as it is not the case of single crystals, other crystallites always contribute to the profile (less for strong texture).
Hloubka průniku Nekonečná tloušťka Poměr energií difraktovaných tenkou vrstvou na povrchu a tenkou vrstvou v hloubce t
q - 2q(B-B) Hloubka průniku 2q (SB, PB)
RutileP42/mnm 4.59774.5977 2.9564 BrookitePbca 9.1745.449 5.138 AnataseI41/amd 3.77103.77109.430
Rutile Anatase Brookite
Parallel beam geometry Bragg-Brentano symmetric geometry Thickness - 0.6 mm Anatase Amorphous
Williamson-Hall plot Crystallite size > 100 nm Microstrain ~ 0.15 % ~ microstrain ~ 1/crystallite size Apparent crystallite size Lattice strain e=Dd/d
Texture indices Thicker Thinner Fiber texture
Residual stress • isotropic elastic constants(E=190 GPa, ν=0,31) • tensile stress • at 500 C drop of stress • stresses ~ 200 - 300 MPa • typical stress anisotropy 1,54 m at 300 C for (215) Typical linear dependence Isotropic stress, absence of tri-axial stresses
105 211 300 ºC Tensile stress ~ 200 MPa Diffraction peaks For different y inclinations 500 ºC no stress
X-ray reflectivity Refraction index Total reflection electron density absorption length re = 2.818 10-15 m - wavelength Critical angle
Surface roughness, film thickness ~ 1/t Perfectly smooth surface Visible up to ~ 300 nm Kiessig maxima 0.3 nm roughness Reflectivity is sensitive onlyto the projection of the surface profileto its normal direction It cannot distinguish betweenmechanically and chemically rough surface
TiO2 200 nm 250 ºC 350 ºC 450 ºC Increasing roughness with annealing temperature
TiO2 200 nm 250 ºC Ωscans
TiO2 1 700 nm 350 ºC Ωscan
Reflectivity curves 2q Increase of roughness with film thickness Reduction of very thin surface layer with annealing temperature
Reflectivity curves fitting Two layer model necessarySurface porous layer 0,8 m 300 C 0,054 m 350 C Experimental Fitted
thickness – 1 mm Depth profiling Different angles of incidence () Rutile 110 Anatase 101
Reflection on multilayers Bragg maxima of multilayer Period d d = T Kiessig maxima Number of ML periods Total thickness T
Kinematical approx: No total reflection region, wrong positions of the satellites (refraction not considered) 10x(GaAs 7nm/AlAs 15 nm), CuKa1 Annealing of amorphous9x(5 nm Si/ 1 nm W)
Experimental set-up Detector X-ray tube CuK Göbel mirror Slit 0.05 mm Secondary graphite monochromator Slit 0.1mm Sample
Diffuse scatteringnon-specular conditions Thermal fluctuationsCorrelated layer distortions Height-height correlationfunction Effective cut-off length of theself-affine surface For multilayers Vertical interface roughnesscorrelation
Fe/Au (70Å/21Å)x13 Low correlation of the interface roughness -1.67 -1.11 -0.56 0 -0.56 1.11 1.67 3.33 Detector angle 2.22 1.11 Sample inclination
Dynamická difrakce Dynamical diffraction Shift from the kinematical Bragg position (due to refraction) Finite width of the diffraction curve (even for T→0) Asymmetry of the maximum – due to the Borrmann effect
Wavefields in crystal Weakly interacts with the atoms – Anomalously low absorption Strongly interacts with the atoms – Anomalously high absorption The Borrmann effect
Epitaxní vrstvy strain Tloušťka
Implantace Si – B+ D = 3,1.1014 D = 6,2.1015 a žíhání 1000 ºC D = 6,2.1015 bez implantace
W ~ 1.8 nm na Al2O3 w sken a|| = 0.3184 nm a0 = 0.3165 nm e|| = 0.6 % <D||> 5 nm Mozaiková rozorientace ~ 1.1º
MBE Mo 22 nm (111) na (001) GaAs Tři domény Mo[110] || GaAs [110] GaAs [1-10] GaAs [100] Mismatch B || -10.2 % ┴ +3.7 % C ┴ +27 % <D> ~ 13 nm Jedna doména Nb[110] || GaAs [100]Nb(001) || GaAs (001) Mismatch 21.1 %