1 / 27

Introduction to Linear Response Propagators and Green’s Functions

Many-Body Theory Application to Electrons in Solids Charles Patterson Charles.Patterson@tcd.ie School of Physics, Trinity College Dublin. Introduction to Linear Response Propagators and Green’s Functions Green’s Function for Schr ö dinger Equation Functions of a Complex Variable

radley
Télécharger la présentation

Introduction to Linear Response Propagators and Green’s Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Many-Body TheoryApplication to Electrons in SolidsCharles Patterson Charles.Patterson@tcd.ieSchool of Physics, Trinity College Dublin • Introduction to Linear Response • Propagators and Green’s Functions • Green’s Function for Schrödinger Equation • Functions of a Complex Variable • Contour Integrals in the Complex Plane • Schrödinger, Heisenberg, Interaction Pictures • Occupation Number Formalism • Field Operators • Wick’s Theorem • Many-Body Green’s Functions • Equation of Motion for the Green’s Function • Evaluation of the Single Loop Bubble • The Polarisation Propagator • The GW Approximation • The Bethe-Salpeter Equation • Numerical Aspects of Many-Body Theory • The GW Approximation • Hybrid Density functionals

  2. Recommended Texts • A Guide to Feynman Diagrams in the Many-Body Problem, 2nd Ed. R. D. Mattuck, Dover (1992). • Quantum Theory of Many-Particle Systems, A. L. Fetter and J. D. Walecka, Dover (2003). • Many-Body Theory of Solids: An Introduction, J. C. Inkson, Plenum Press (1984). • Green’s Functions and Condensed Matter, G. Rickaysen, Academic Press (1991). • Mathematical Methods for Physicists, 5th (Int’l) Ed. G. B. Arfken and H. J. Weber, Academic Press (2001) • Elements of Green’s Functions and Propagation, G. Barton, Oxford (1989).

  3. Overview • Propagation of single particles or holes • Zero temperature formalism (c.f. finite temperature formalism) • Applicable in first principles, model Hamiltonian, … methods • Scattering of particles and holes from each other and external potentials • Renormalisation of particle or hole energies • Finite lifetimes for particles or hole excitations (quasiparticles) • Particle-hole bound states (excitons, plasmons, magnons, …) • New concepts such as • N-body Green’s functions particle, hole, particle-hole, particle-particle, … propagators • Self energy (energy renormalisation and excitation lifetime)

  4. Overview • Approximations to propagators derived from expansion in (Feynman) diagrams or by functional derivative technique • Wick’s Theorem for evaluating time-ordered products of operators • Lehmann Representation to extract retarded functions • Integral equations which arise in the new concepts • Dyson’s equation G = Go + GoSG • Bethe-Salpeter EquationP = Po + Po v P • Effective Potential V = v + v Po V • Applications of Concepts and Methods in Many-Particle Theory • Correlation Effects and the Total Energy (No-body propagator) • Self-Energies and the GW approximation (1-body propagator) • Collective Excitations and the Bethe-Salpeter Equation (2-body propagator)

  5. Classical Statistical Mechanics • Average value of variable A • Probability distribution in phase space r Probability that system is in infinitesimal region of phase space dG Elements of position p and momenta q Average value of variable A Density in phase space

  6. Classical Statistical Mechanics • Average value of variable A in NVT Canonical Ensemble Probability depends on total energy of state Canonical partition function normalises r Helmholtz free energy Average value of variable A

  7. Classical Statistical Mechanics • Correspondence with Quantum Mechanics Density operator Variables represented as operators Complete set of states Expectation value of A Trace of A Sum of diagonal elements with probability weights Pure state Mixed state

  8. Classical Statistical Mechanics • Linear Response in Classical Mechanics Hamiltonian contains Ho and perturbation B Average value of A in absence of perturbation B b = 1/kT <A> changes in presence of perturbation B Defines the linear response

  9. Classical Statistical Mechanics • Linear Response in Classical Mechanics Expansion of exponential with scalar exponent Linear response function

  10. Classical Statistical Mechanics • Example of application of Static Linear Response Molecule in gas phase with permanent dipole moment -p.E term in Hamiltonian <px>o vanishes in absence of field p is magnitude of permanent moment P is polarisation c is molecular susceptibility of gas phase

  11. Classical Statistical Mechanics • Time-dependent linear response • Consider a system where a steady perturbation –lB is applied from t→- • The perturbation is switched off abruptly at t = 0 • To obtain <A(t)> we must use the perturbed system density at t = 0 (full H) Relaxation after static perturbation in time domain

  12. Classical Statistical Mechanics • Time-dependent linear response • Onsager regression hypothesis The way in which spontaneous fluctuations in a system relax back to equilibrium is the same as the way in which a perturbed system relaxes back to equilibrium, so long as the perturbation is small Relaxation after static perturbation in time domain

  13. Classical Statistical Mechanics • Time-dependent linear response Define the response function cAB Causality requires this for t < t’ Response depends only on time difference Introduce change of variable f(t’) switches off at t’ = 0 Linear response in terms of response function

  14. Classical Statistical Mechanics • Linear response function Linear response function is correlation function

  15. Classical Statistical Mechanics • Example: Mobility of particle in a fluid m Phenomenological relation Force acting on charged particle in uniform field Linear response approach Need to know velocity auto-correlation function Mobility

  16. Classical Statistical Mechanics • Example: Electric conductivity s Hamiltonian for charged particle in vector potential, A Omit nonlinear A2 term Define current density Hamiltonian as Ho + perturbing part

  17. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon Equation of motion Set driving force to zero Equation of motion in absence of driving force Solution in absence of driving force A, d depend on initial conditions Required for EoM to be satisfied – defines w1

  18. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon • Impulse Response Function We can view the continuous force applied to a mass on a spring as a sequence of delta function impulses. If we know the response of the system to a single impulse, provided the system is linear, we can immediately write down the solution in terms of the impulse response function. G(t-t’) is the Green’s function Dirac delta function is a unit impulse function Velocity of oscillator when given an unit impulse at t = 0

  19. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon • Impulse Response Function Unit impulse F(t’)D = 1 Position following unit impulse Velocity following unit impulse Position following impulse series Position following continuous force

  20. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon • Impulse Response Function Green’s function Defining relation for G Position, from G for a given F Velocity, from G for a given F

  21. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon • Impulse Response Function Change of variable Example: impulse at t’=0 Recover original solution from impulse response function

  22. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon • Impulse Response Function Example: Periodic forcing If we set the lower limit in the integral dt’ to 0 instead of – we obtain additional transient terms which depend on initial conditions

  23. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon • Evaluate velocity auto-correlation function

  24. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon • Parseval’s Theorem Convolution of f1 and f2 Fourier transform of f1 Product of Fourier transforms Fourier transform of convolution

  25. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon

  26. Classical Statistical Mechanics • Example: Electric conductivity of harmonic oscillator e.g. phonon Same result as Drude when wo tends to zero

  27. Classical Statistical Mechanics • Conclusions • Linear response functions, e.g. transport coefficients, are derived from correlation functions • The correlation function is independent of the external stimulus (Onsager) • The reponse function contains the step function q(t) to satisfy causality

More Related