150 likes | 276 Vues
This lecture by Roger S. Gaborski delves into advanced concepts of histograms in computer vision. It explains how a histogram maps pixel values from a 2D matrix into a vector, highlighting the significance of each bin representing a range of gray levels. The discussion includes methods to assess the similarity between histograms, utilizing the histogram intersection method. Examples are provided to illustrate cases of identical and different histograms, emphasizing the limitations of histograms in capturing spatial information in image analysis.
E N D
Lecture 08 Roger S. Gaborski Advanced Computer Vision Roger S. Gaborski
Histograms • Histogram is nothing more than mapping the pixels in a 2 dimensional matrix into a vector • Each component in the vector is a bin (range of gray level values) and the corresponding value is the number of pixels with that gray level value
Similarity between Histograms • Similarity between histogram bins: • Assuming both histograms have ∑nj j=1…B pixels M. Swain and D. Ballard. “Color indexing,”International Journal of Computer Vision, 7(1):11–32, 1991.
Histogram Intersection • A simple example: • g = [ 17, 23, 45, 61, 15]; (histogram bins) • h = [ 15, 21, 42, 51, 17]; • in=sum(min(h,g))/min( sum(h),sum(g)) • in = 0.9863
>> g = [17,23,45,61,15]; >> h = [15,21,42,51,17]; >> min(g,h) ans= 15 21 42 51 15 >> N = sum(min(g,h)) N = 144 >> D=min(sum(h),sum(g)) D = 146 >> intersection = N/D intersection = 0.9863 Roger S. Gaborski
If Histograms Identical • g = 15 21 42 51 17 • h = 15 21 42 51 17 • >> in=sum(min(h,g))/min( sum(h),sum(g)) • in = 1
Different Histograms • h = 15 21 42 51 17 • g = 57 83 15 11 1 • >> in=sum(min(h,g))/min( sum(h),sum(g)) • in = 0.4315
Region and Histogram Similarity with itself: >>h = hist(q(:),256); >> g=h; >> in=sum(min(h,g))/min( sum(h),sum(g)) in = 1
>> r=236;c=236; >> g=im(1:r,1:c); >> g= hist(g(:),256); >> in=sum(min(h,g))/min( sum(h),sum(g)) in = 0.5474
Partial Matches >> g= hist(g(:),256); >> in=sum(min(h,g))/min( sum(h),sum(g)) in = 0.8014 in=sum(min(h,g))/min( sum(h),sum(g)) in = 0.8566
Lack of Spatial Information • Different patches may have similar histograms
For Howard Ross Roger S. Gaborski