1 / 16

Physical Metallurgy

Physical Metallurgy . Design alloys for aircraft engine. ◈ Introduction.

randilyn
Télécharger la présentation

Physical Metallurgy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Physical Metallurgy Design alloys for aircraft engine.

  2. ◈ Introduction When we design alloys for aircraft, we have to consider many kinds of conditions. They depend on the part of aircraft. Our team choose engine alloys for our topic and especially Wechoose turbine alloys. A turbine is a machine or engine which uses a stream of air, gas, water, or steam to turn a wheel and produce power. Those three facts need to be regarded for turbine alloys. Firstly, the property of turbine alloy must have high strength and high-temperature strength, because it spins very rapidly. Secondly, the cost of material need to be regarded. Thirdly, the weight of material need to be regarded, because heavy aircraft needs lots of fuel. We are going to consider those three factors.

  3. ◈ Definition. An aircraft engine is a propulsion system for an aircraft. Aircraft engines are almost always a type of lightweight internal combustion engine. ◈ Requirement for aircraft engine ․ reliable ․ lightweight ․ powerful ․ small and easily streamlined ․ repairable ․ fuel efficient

  4. ◈ Problems of materials applied aircraft engine 1) Low room temperature ductility. 2) Creep resistance and fracture toughness become lower as room temperature ductility increases due to changing of microstructure. 3) Above 800℃, there is the problem of oxidation resistance. 4) Shortage of datum. 5) High cost to manufacture. ◈ FYI : Changing of materials applied aircraft. 1) Wood. 2) Aluminum alloy. 3) Titanium alloy. 4) Compo-site material.

  5. ◈ Design alloys for aircraft engine. 1) Reliable 2) Lightweight 3) Powerful. 4) Fuel efficient to give the aircraft the range the design requires. 5) Capable of operating at sufficient altitude for the aircraft. 6) Safety. 7) Environmental consideration. 8) Economical consideration.

  6. ◈ Jet Engine Google Research jet engine image (http://www.free-online-private-pilot-ground-school.com/turbine-engines.html  )

  7. ◈ Jet Engine Media player http://video.naver.com/2008111918405323069 http://blog.naver.com/dreamline20?Redirect=Log&logNo=130005560138&vid=0

  8. ◈ Considerable Metal Element 1)Iron Alloys 1. Pure iron 2. Carbon steel C, Mn, P, S, Ni, Cr, Mo 2) Aluminium Alloys 1. 99% Pure Aluminium 2. Al - Cu (4.4%) 3. Al - Cu (4.0%) - Mg(1-1.5%) - Si(0.5%) - Mn(0.5-1%) 4. Duralumin + Mg(0.5%-1.5%) 5. Al - Mn : It has good corrosion resistance. 6. Al - Mn(1.2%) : It has high internal force. 7. Al - Mg(2.5%) 3) Magnesium Alloys 4) Titanium Alloys

  9. ◈Turbine - Temperature Kim Mok-soon, High Temperature Metallic Materials, Inha, 2004

  10. ◈ Design new turbine alloys *NIMONIC alloy 75 (Ni 80.0, Cr 19.5) *NIMONIC alloy 80A (Ni 76.0, Cr 19.5, Ti 2.4, Al 1.4) *NIMONIC alloy 90 / NIMOLOY alloy PK37 (Ni 60.0, Cr 19.5, Co 16.5, Ti 2.5, Al 1.5)

  11. *Jet Engine - Turbine

  12. *Turbine - Structure Kim Mok-soon, High Temperature Metallic Materials, Inha, 2004

  13. *Turbine - material Kim Mok-soon, High Temperature Metallic Materials, Inha, 2004

  14. *Design A New Turbine Alloys For Aircraft As We mentioned about this project, it's very hard to design new alloys, so We are going to design a new turbine alloy which is based on 93% of NIMONIC alloy 90. We choose that 7% of (FeC - Mg) alloy into the NIMONIC alloy 90. FeC is cheap and it has high strength. Mg is very light. That is why, they can cover their short points each others. Following table is a final ratio of new turbine alloy.

  15. Conclusion We tried to find out appropriate material of aircraft, and considered such as high strength and high-temperature strength, cost of material and the weight of material. We tried to add (FeC - Mg) alloy into the NIMONIC alloy 90. FeC is heavy but Mg is light. Mg has low hardness but FeC has high strength. In addition, both materials are cheaper than Ni (which is main material of NIMONIC alloy 90). (Ni) U$/ton 8,810 (Mg) U$/ton 3,950 ( Base metal, Minor metal http://blog.naver.com/bizdsk?Redirect=Log&logNo=40056770901) However, our knowledge is not enough to know about everything, and it's a kind of assumption. The reason is why, it can't be used directly for real aircraft. It must be verified by correct experiment. However, We hope that this report is a new attempt of aircraft material experiment.

  16. Thank You!! By 1Group

More Related