1 / 23

Shock Waves & Potentials In Nonlinear Optics

Shock Waves & Potentials In Nonlinear Optics. Laura Ingalls Huntley Prof. Jason Fleischer Princeton University, EE Dept. PCCM/PRISM REU Program 9 August 2007. What is Nonlinear Optics?.

reeves
Télécharger la présentation

Shock Waves & Potentials In Nonlinear Optics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Shock Waves & Potentials In Nonlinear Optics Laura Ingalls Huntley Prof. Jason Fleischer Princeton University, EE Dept. PCCM/PRISM REU Program 9 August 2007

  2. What is Nonlinear Optics? • Nonlinear (NL) optics is the regime in which the refractive index of a material is dependant on the intensity of the light illuminating it.

  3. Photorefractive Materials • Examples: BaTiO3, GaAs, LiNbO3 • Large single crystal (~1 cm3) with single electric domain required for experiment • Single domain attained by poling • Exhibit ferroelectricity: • Spontaneous dipole moment • Extraordinary axis is along dipole moment • SBN:75 • Strontium Barium Niobate • SrxBa(1-x)Nb2O6 where x=0.75

  4. Band Transport Model • Describes the mechanism by which the illuminated SBN crystal experiences an index change. • Sr impurities have energy levels in the band gap. • An external field is useful, but not necessary. Eex Conduction Band e- impurity levels Valence Band

  5. Band Transport Model, cont. • When an Sr impurity is ionized by incoming light, the emitted electron is promoted to the conduction band. Eex Conduction Band hν Valence Band

  6. Band Transport Model, cont. • Once in the conduction band, the electron moves according to the external electric field. • If no external field is present, diffusion will cause the electrons to travel away from the area of illumination. Eex Conduction Band Valence Band

  7. Band Transport Model, cont. • Once out of the area of illumination, the electron relaxes back into holes in the band gap. Eex Conduction Band Valence Band

  8. Band Transport Model, cont. • In time, a charge gradient arises, as shown. • The screening electric field is contrary to the external field. • The screening field grows until its magnitude equals that of the external field. Eex Esc - - - + + + Valence Band

  9. Eex Etot n0 n x-axis of crystal The Electro-optic/Kerr Effect • Where the electric field is non-zero, the index of refraction is diminished. • Snell’s Law dictates that light is attracted to materials with higher index, n. • In the case shown, the index change is focusing. • The defocusing case occurs when Eex is negative, and the illuminated part of the crystal develops a lower index.

  10. Linear Case: Diffraction Defocusing Case & Background: Dispersive Waves Linear Nonlinear Top view Focusing Case: Spatial Soliton Nonlinear Defocusing Case: Enhanced Diffraction Δn = γI Nonlinear Focusing & Defocusing Nonlinearities

  11. Experiment: Simulation: Input Linear Diffraction Nonlinear Shock Wave Shock wave = Gaussian + Plane Wave

  12. Nonlinear Optics & Superfluidity • The same equations govern the physics of waves in nonlinear optics and cold atom physics (BEC). • Thus, the behavior of a superfluid may be probed using simple optical equipment, thus alleviating the need for vacuum isolation and ultracold temperatures.

  13. Optical Shock Waves Nonlinear Optics & BEC BEC Shock Waves

  14. Slowly-varying amplitude Rapid phase Linear Top view The Wave Equation The Linear Wave Equation: For a beam propagating along the z-axis: We derive the Schrödinger equation: Assuming that the propagation length in z is much larger than the wavelength of the light. I.e.:

  15. The Wave Equation, Cont. The Nonlinear Wave Equation: Where the electric displacement operator is approximated by: We derive the nonlinear Schrödinger equation: Kerr coefficient Defocusing Focusing Intensity Propagation Nonlinearity Diffraction

  16. Nonlinear Schrödinger Equation Nonlinear Optical System Cold Atom System Nonlinear Schrödinger equation Gross-Pitaevskii equation Coherent |ψ|2 = PROBABILITY DENSITY • Evolution in time • Kinetic energy spreading • Nonlinear interaction term: mean-field attraction or repulsion Coherent |ψ|2 = INTENSITY • Propagation in space • Diffraction • Nonlinear interaction term: Kerr focusing or defocusing SAME EQUATION SAME PHYSICS

  17. The Madelung transformation allows us to write fluid dynamic-like equations from the nonlinear Schrödinger equation. Intensity is analogous to density. Shock speed is intensity-dependent; thus, a more intense beam in a defocusing nonlinearity with a plane wave background will diffract faster. Fluid Dynamics

  18. A Shock Wave & A Potential Step 1: A gaussian shock focused along the extraordinary (y) axis of the crystal creates an index change in the crystal, but does not feel it. Step 2: A gaussian shock focused along the ordinary (x) axis with a plane wave background feels both the index potential created by the first beam and its own index change.

  19. MatLab Simulation The nonlinear Schrödinger equation is solved using a split-step beam propagation method in MatLab. Linear Part: Nonlinear Part: Shock Wave & Potential

  20. Laser (532 nm) Mirror Beam Splitter Lenses (Circular, Cylindrical) Spatial Filter Pincher Attenuator Laser Beam Potential Plane Wave Shock SBN:75 (Defocusing Nonlinearity) Top Beam Steerer Experimental Set-up

  21. Experimental Results The output face of the crystal, before the nonlinearizing voltage is applied across the extraordinary axis of the crystal. y x

  22. Experimental Results, cont. After a defocusing voltage (-1500 v) has been applied to the extraordinary axis of the crystal for 5 minutes. y x

More Related