1 / 37

Can one measure the Neutrino Mass in the Double Beta Decay ?

This colloquium celebrates Jochen Wambach's 60th birthday and explores the possibility of measuring the neutrino mass in double beta decay. Amand Faessler from the University of Tuebingen presents his research on this topic.

rgrillo
Télécharger la présentation

Can one measure the Neutrino Mass in the Double Beta Decay ?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fest-Colloquium for the 60. Birthday of Jochen Wambach. Can one measure the Neutrino Mass in the Double Beta Decay ? Amand Faessler, University of Tuebingen

  2. Preparation for the legendary Football Game in Jülich against Solar Energy ~1977 Müther Baur Meyer ter Vehn Wambach FAESSLER; GSI 16. November 2010

  3. The successful Nuclear Physics Football Team in Jülich-Broich ~1975 Müther, Grümmer Krewald Wambach Faessler Meyer ter V. K. W. Schmid Baur Osterfeld FAESSLER; GSI 16. November 2010

  4. Jochen Wambach * July 7. 1950 • Studies at Univ. Bonn • 1974-79 Dipl. + Ph. D. in Jülich/Bonn • 1979-83 Stony Brook • 1984-96 Univ. Illinois 1990 Full Prof. • 1990-95 Univ. Bonn + Vice-Director Jülich • 1996- Full Prof. TU Darmstadt • 2004- Head Theory Group Hadrons + QCD at GSI. FAESSLER; GSI 16. November 2010

  5. Honors and Service of Jochen Wambach • 2003- Fellow of American Phys. Soc. • 2002- 2008 Senat of DFG • 2007- Editor: European J. of Phys. A • 2007- Editor: Phys. Rev. Lett. • Member of many National and International Committees. FAESSLER; GSI 16. November 2010

  6. SPIRES: Famous Publication • „Famouspaper“ with 436 citationswith R. Rapp:ChiralSymmetry Restoration andDileptons in Relativistic HI Collisions. Published in AnnalsofPhysics 2000. 1) Cooperstein, Wambach: Electroncapture in Stellar Collaps ; Nucl. Phys. A420(1984) 2) Chanfray, Rapp, Wambach: Medium Modificationsofther Meson at SPS Energies; Phys. Rev. Lett. 76 (1996) FAESSLER; GSI 16. November 2010

  7. 1) What triggers the presupernova stellar collaps? Wambach, Cooperstein. Nucl. P.A420(1984) Iron Core 26Fe30 Energy e- Electrons Protons Neutrons g9/2 P1/2 f5/2 Fermi Surface P3/2 f7/2 Bethe+Brown 1979: e- + p f7/2n f5/2+ ne Fuller soon blocked 1982: n f5/2 full Wambach 1984: Thermal unblocking: p g9/2  n g9/2 ; p g9/2 n g7/2 FAESSLER; GSI 16. November 2010

  8. 2) Propagation of the r-Meson in hot and dense Nuclear Matter (CERES Data)Wambach et al. Phys. Rev. Lett. 76 (1996)436 Model forr-Meson Model forr-Meson p-Meson p-Meson Pion propagation in hot and dense nuclear matter: p-Meson p-Meson N N-1 ; D N-1 ; N D-1 ; DD-1 FAESSLER; GSI 16. November 2010

  9. Explanation of the CERES-Dilepton-Data CERN PPE 1995 Vector Meson Dominance r  g  e+ e- Modified r Bare r meson Mass of modified r-Meson FAESSLER; GSI 16. November 2010

  10. Can one measure the Neutrino Mass in the 0n Double Beta Decay ? Fest-Colloquium for the 60. Birthday of Jochen Wambach July 7. 2010. Amand Faessler, University of Tuebingen

  11. Sehr geehrte radioaktiven Damen und Herren: Invention of the Neutrino in a letter from Zuerich to Tuebingen on December 4th, 1930: Conservation of Energy and Angular Momentum in b-Decay. FAESSLER; GSI 16. November 2010

  12. Reines and Cowen and the Neutrino-Detection (1956 at Savanna River Reactor) FAESSLER; GSI 16. November 2010

  13. 1)Mass of the Electron Neutrino?Tritium decay (Mainz + Troitsk) Mainz + Troisk Triton Beta-Decay mn < 2.3 eV FAESSLER; GSI 16. November 2010

  14. Upper limit of Neutrino mass from the Mainz( Troisk) Experiment Results with Gaussian error 95 % confidence limit <m n> < 2.3 eV 5% <m neff>2 [eV2] -0.6 (2.3 eV)2 FAESSLER; GSI 16. November 2010

  15. A dinosaur on trip KATRIN Spectrometer tank on the way from the Rhine to the FZ Karslsruhe FAESSLER; GSI 16. November 2010

  16. 2) Neutrino Mass from Astrophysics: Density Distribution of Matter in the Universe (Power Spectrum of Matter Distribution) FAESSLER; GSI 16. November 2010 h = 0.71

  17. k = 2p/l [(h=0.71)/ Mpc] FAESSLER; GSI 16. November 2010

  18. W0 = 1.0 WL= 0.66Wb= 0.04H0 = 72[km/(sec*Mpc] ns = 0.94 Wn = 0 Cosmic Background Radiation 0.01 FAESSLER; GSI 16. November 2010

  19. W0 = 1.0 WL= 0.66Wb= 0.04H0 = 72 ns = 0.94 Wn = 0.05 0.01 FAESSLER; GSI 16. November 2010

  20. W0 = 1.0 WL= 0.66Wb= 0.04H0 = 72 ns = 0.94 Wn = 0.25 0.01 FAESSLER; GSI 16. November 2010

  21. FAESSLER; GSI 16. November 2010

  22. 3) Neutrino mass from Oνββ-Decay (forbidden in Standard Model) e2 P e1 P Left ν Phase Space 106x2νββ Left n n n = nc Majorana Neutrino Neutrino must have a Mass FAESSLER; GSI 16. November 2010

  23. GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: FAESSLER; GSI 16. November 2010

  24. Grand Unified left-right Symmetry Proton Proton Neutron Neutron Neutron Proton Neutron Proton Proton Neutron First and Third Diagram ~ Neutrino Mass Neutron Proton FAESSLER; GSI 16. November 2010

  25. Supersymmetric Diagrams for the Neutrinoless Double Beta decay. l‘111 Neutron Proton l‘111 Lightest SUSY Particle (LSP) c g~, h1~; h2~; W~ LSP c + g~ l‘111 Neutron Proton l‘111 FAESSLER; GSI 16. November 2010

  26. The best choice: Quasi-Particle Random Phase Approximation (QRPA) and Shell Model QRPA starts with Pairing: V. Rodin, F. Simkovic, S. Yousef, D. L. Fang, A. Escuderos FAESSLER; GSI 16. November 2010

  27. Neutrinoless Double Beta- Decay Probability FAESSLER; GSI 16. November 2010

  28. QRPA (TUE), Shell Model (Madrid-Strasburg), IBM2, PHFB Different Basis Sizes Forces; Bonn CD; Argonne V18 Different axial charges; gA Short Range Correlations: Jastrow Fermi Hypernetted Unitary Correlator Operator Metod Brueckner QRPA and Renormalized-QRPA P-HFB-GCM PHFB+GCM

  29. Which Angular Momentum Jp Neutron Pairs contribute to the Neutrinoless Double Beta decay? • Quasi-Particle Random Phase Approach (QRPA; Tübingen). • Shell Model Caurier et al. • Angular Momentum Projected Hartee-Fock-Bogoliubov (Tübingen; P. K. Rath et al.; Rodriguez & Martinez-Pinedo+GCMb). • Interacting Boson Model (Barea+Iachello) FAESSLER; GSI 16. November 2010

  30. QRPA all the Ring digrams: • Ground State: 0, 4, 8, 12 , … quasi- particles (seniority) 0 4 8 b) The Shell Model Ground state: 0, 4, 6, 8, …. 6 Problem for SM: Size of the Single Particle Basis. FAESSLER; GSI 16. November 2010

  31. Additive Contributions of 0, 4, 6, … Quasi-Particle States in the SM (Poves et al.). 128Te Not in QRPA 82Se Increasing Admixtures in the Ground State FAESSLER; GSI 16. November 2010

  32. Basis Size Effect for 82Se on the Neutrinoless Double Beta Decay. 4levels (Shell Model): 1p3/2, 0f5/2, 1p3/2, 0g9/2 4levels: Ikeda Sum rule 50 % 6levels: 0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2; Ikeda 100% 9levels:0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2, 1d5/2, 2s1/2, 1d3/2 FAESSLER; GSI 16. November 2010

  33. Contribution of Higher Angular Momentum Pairs in Projected HFB (Tübingen). HFB 0bbn Particle number and angular momentum projection before the variation; Gogny force; Axial symmetric deformation; No parity mixing; real coefficients of the Bogoliubov transformation IBM: = 0+ and 2+ Pairs FAESSLER; GSI 16. November 2010

  34. QRPA (TUE), Shell Model (Madrid-Strassburg), IBM2 (Iachello), PHFB (P. Rath) FAESSLER; GSI 16. November 2010

  35. HD claim for Detection of 0n DBD hep-ph/0512263 Exp.Heidelberg-Moscow: Klapdor and coworkers in Heidelberg claim, they have detected 0nbb of 76Ge Source = Detector 10.9 kg 86% enriched 76Ge from 8 % natGe in Russia Spectrumwith 71.7 kg•y Q(0nbb) = 2038 keV FAESSLER; GSI 16. November 2010

  36. Neutrino Mass from 0nbb • Experiment Heidelberg-Moskau: • Klapdor‘s et al. Claim • 76Ge Mod. Phys. Lett. A21,1547(2006) ; • T(1/2; 0nbb) = (2.23 +0.44 -0.31) x 1025 years; 6s Matrix Elements: QRPA Tuebingen • <m(n)> = 0.24 [eV] (exp+-0.02; theor+-0.01) [eV] FAESSLER; GSI 16. November 2010

  37. Summary • QRPA seems presently a reliable method • Shell Model: to small basis IKEDA sum rule violated by 50% • Projected Hartree Fock Bogoliubov: Pairing +Quadrupole and Gogny force; mainly 0+ neutron pairs change in proton pairs. • Interacting Boson Model: Changes only s(0+) and d(2+) neutron pairs into protons pairs. • To prove the mass mechanism is leading, one needs to measure several nuclear systems. Only if proved, the neutrino mass can be measured in the neutrinoless Double BetaDecay. THE END FAESSLER; GSI 16. November 2010

More Related