1 / 45

Interacciones Lípidos - Proteínas

Interacciones Lípidos - Proteínas. Serum albumin. Interacciones Lípidos - Proteínas. Serum albumin is the carrier of fatty acids in the blood. Serum albumin is the most plentiful protein in blood plasma. Each protein molecule can carry seven fatty acid molecules .

ronna
Télécharger la présentation

Interacciones Lípidos - Proteínas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Interacciones Lípidos - Proteínas

  2. Serum albumin Interacciones Lípidos - Proteínas • Serum albumin is the carrier of fatty acids in the blood. • Serum albumin is the most plentiful protein in blood plasma. • Each protein molecule can carry seven fatty acid molecules. • When our body needs energy or needs building materials, fat cells release fatty acids into the blood. There, they are picked up by serum albumin and delivered to distant parts of the body. http://www.rcsb.org/pdb

  3. Interacciones Lípidos - Proteínas Proteínas de membrana MEMBRANE PROTEINS OF KNOWN STRUCTURE http://www.mpibp-frankfurt.mpg.de/michel/public/memprotstruct.html

  4. Dominios Básicos de Estructura Secundaria en las Proteínas de Membrana Porina (Cadenas b) Bacteriorrodopsina (hélices a)

  5. O2 The mitochondrial respiratory chain Claudio Gomes - ITQB, Oeiras, Portugal

  6. Complex I NADH:quinone oxidoreductase • Mitochondria • 42/43 subunits / ~ 900 kDa • Cofactors: 1-2 FMN, 7-8 FeS • Covalently bound lipid • ~ 3 bound quinol molecules • Proton translocation • Prokaryotic • 14 subunits / ~500 MDa • ~ 55 TM helices • Cofactors: 1 FMN, up to 9 FeS Claudio Gomes - ITQB, Oeiras, Portugal

  7. Complex II succinate:quinone oxidoreductase • Mitochondria • 4 subunits • 1 FAD covalently bound • FeS clusters ([2Fe-2S]; [4Fe-4S], [3Fe-4S]) • 2 TM segments containing heme b • Prokaryotic • Identical to the mitochondrial complex except at the TM / heme b composition Claudio Gomes - ITQB, Oeiras, Portugal

  8. Complex III quinol:cytochrome c oxidoreductase • Mitochondria • 11 subunits / dimer / ~240 kDa • Three core subunits • Contains up to 8 additional subunits • Cofactors: 2 cyt b, cyt c1, Rieske [2Fe-2S] • H+ translocation ( Q-cycle mechanism) • Prokaryotic • 3 core subunits and cofactors present Claudio Gomes - ITQB, Oeiras, Portugal

  9. The b-c1 complex – Complex III Z. Zhang et al (1998) Nature 392, 677-684

  10. Electron-Proton Transfer in Complex III http://www.life.uiuc.edu/crofts/bc-complex_site/

  11. 1979 1990 1995 Complex IV cytochrome c : oxygenoxidoreductase • Mitochondria • 13 subunits (3 core) • Binuclear CuA site, heme a, Heme-copper site CuA-a3 Claudio Gomes - ITQB, Oeiras, Portugal

  12. Cytochrome c oxidase – Complex IV Subunit III (in blue) with an embedded phospholipid. Subunit IV (green, unique to this enzyme) Subunit I (yellow) - Subunit II (purple) Antibody fragment (cyan) used to drive crystallization. Cytochrome Oxidase Home Page http://www-bioc.rice.edu/~graham/CcO.html

  13. Complex IV cytochrome c : oxygenoxidoreductase • Mitochondria • 13 subunits (3 core) • Binuclear CuA site, heme a, Heme-copper site CuA-a3 • Prokaryotic • 3-5 subunits (including core sub I-III) • Multiple heme types (e.g. A, As, B, O) • Proton pumps • Superfamily of heme-copper oxidases Claudio Gomes - ITQB, Oeiras, Portugal

  14. Non heme-copper oxidases + H + H + H Cu A d b b o b Cu Cytochrome bd (eg. bdEc) a 3 a Cu B 3 B b b Cu 3 B Quinol oxidases (eg. bo3Ec) Cytochromeoxidases (eg. aa3Pd) FixN-type oxidases (eg. cbb3Pd) Fe Fe O2 O2 O2 H2O H2O H2O Alternative oxidase (eg. plant mitochondria) Terminal Oxidases Diversity Heme-copper oxidases Claudio Gomes - ITQB, Oeiras, Portugal

  15. Some bacterial genes move to the nucleus and the bacterial endosymbionts become mitochondria Non-photosynthetic Eukaryote Aerobic Eukaryote Aerobic Bacteria Ancestral anaerobic eukaryote Aerobic metabolism is more efficient Photosynthetic cyanobacterium New cell can make ATP from sunlight Endosymbionts become mitochondria The endosymbiotic theory suggests that eukaryotes acquired respiration capability by the symbiosis with an oxygen respiring bacteria Claudio Gomes - ITQB, Oeiras, Portugal

  16. Mitochondrial oxidative phosphorylation Complex II Complex I ATPase Complex IV Complex III Biophysics 354, Lecture 8 http://www.life.uiuc.edu/crofts/bioph354/lect8.html

  17. H+ Cambridge University Robert Poole Respiratory chain - + ADP + Pi F0 F1 H+ ATP + H2O Inter- Membrane space Matrix Inner membrane

  18. Cambridge University Robert Poole

  19. Cambridge University Robert Poole

  20. HOW MUCH ATPDO WE PRODUCE? 1000 kg Cambridge University Robert Poole AT REST Adult converts one half body weight equivalent of ATP per day NORMAL Adult converts body weight equivalent of ATP per day HARD WORK Adult converts up to 1000 kg ATP per day 70kg? £1M?

  21. Los Elementos y Moléculas de la Vida Losada, Vargas, Florencio y De la Rosa (1998-9) Editorial Rueda, Madrid

  22. ATP synthase — energy converter. Schnitzer (2001) Nature 410, 878 - 881

  23. Rotational mechanism of ATP synthase W. Junge et al. (1997) TIBS 22, 420-423

  24. ADP + Pi ADP + Pi ADP + Pi L L Energy O T L T O T O ATP ATP ADP + Pi ADP + Pi ATP Structure of F1 from bovine heart mitochondria viewed from the cytoplasmatic side aDP bTP aTP bDP bE aE Abrahams et al. (1994) Nature 370, 621-628.

  25. Animation of ATP synthesis by F0F1 complexes

  26. Animation of ATP-driven g subunit rotation

  27. ATP synthase Animation of the complete mechanism Lecture 10, ATP synthase http://www.life.uiuc.edu/crofts/bioph354/lect10.html

  28. Observation of F1 rotation Yasuda et al (2001) Nature 410, 898-904

  29. Bacteriorhodopsin

  30. Observed conformations of retinal derivatives The light-induced all-trans to 13-cis isomerization of the retinal results in deprotonation of the Schiff base followed by alterations in protonatable groups within bacteriorhodopsin. Displacement of Schiff base on deprotonation Subramaniam & Henderson (2000) Nature 406, 653 - 657

  31. Details of the structural differences between the ground state (purple) and the M2 intermediate (yellow). Extracellular view Cytoplasmic view Sass et al. (2000) Nature 406, 649 - 653

  32. Molecular mechanism of proton (H+) pumping in bacteriorhodopsin Kühlbrandt (2000) Nature 406, 569 - 570

  33. The four archaeal rhodopsins in H. salinarum Spudich JL (2002) Science 288, 1358-9

  34. Phylogenetic analysis of proteorhodopsin with archaeal and Neurospora crassa (NOP1) rhodopsins Béjà et al. (2000) Science 289, 1902-1906

  35. Conjugación bacteriana: Transferencia de plásmido con resistencia a un determinado antibiótico X. Gomis & M. Coll, Diario de Sevilla, 15 Marzo 2001

  36. Bacterias resistentes a los antibióticos A. Vila, Diario de Sevilla, 10 Julio 2001

  37. Bacteria de la tuberculosis. Uno de los muchos microorganismos que ha desarrollado inmunidad frente a los fármacos A. Vila, Diario de Sevilla, 10 Julio 2001

  38. El anillo de beta-lactama A. Vila, Diario de Sevilla, 10 Julio 2001

  39. Beta-lactamasa. Metaloproteína de cinc que destruye a los antibióticos A. Vila, Diario de Sevilla, 10 Julio 2001

  40. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase Gomis et al. (2001) Nature 409, 637-641

  41. Lateral view View along the 6-fold axis The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase Gomis et al. (2001) Nature 409, 637-641

  42. Bacterial multidrug effluxtransporter S Murakami et al. (2002) Nature 419,587

  43. Bacterial multidrug effluxtransporter • The emergence of bacterial multidrug resistance is an increasing problem in the treatment of infectious diseases. Multidrug resistance often results from the overexpression of a multidrug efflux system. • AcrB is a major multidrug exporter in Escherichia coli. It cooperates with amembrane fusion protein, AcrA, and an outer membrane channel, TolC. • Substrates translocatedfrom the cell interior through the transmembrane region and from the periplasmthrough the vestibules are collected in the central cavity and then activelytransported through the pore into the TolC tunnel. • The AcrB system extrudes cationic, neutral and anionic substances, and pumps out some beta-lactams with multiple charged group. AcrAB catalyses efflux driven by proton motive force. S Murakami et al. (2002) Nature 419,587

More Related