'1 pr' diaporamas de présentation

1 pr - PowerPoint PPT Presentation


Building Better Homes

Building Better Homes

Building Better Homes. The crying need in our culture is not better houses… it’s better homes. Proverbs 15:16-17 & 17:1. 2 Ptr . 3 “seeing that all these things shall be dissolved…”. 2 Ptr . 3 “seeing that all these things shall be dissolved…”.

By jirair
(193 views)

Randomized algorithm

Randomized algorithm

Randomized algorithm. Tutorial 1 Hint for homework 1. Outline. Lookup table problem (Exercise 1.18) Convex function (Exercise 2.10) Hint for homework 1. Lookup table problem. F :{0,…, n -1}→{0,…, m -1}. For any x and y with 0≦ x , y ≦ n- 1:

By greg
(126 views)

MEMORY MANAGEMENT

MEMORY MANAGEMENT

MEMORY MANAGEMENT. IM PM MM 3 SERVICES OF OS MM. MM. Keep track of all Mem locns free (F) or allocated (Al) & if al to which PR.. & how much Decide Mem allocn. Policy – which PR. should get how much Mem, when & where

By mckile
(81 views)

Evaluation Notes Bergen COURSE Spring, 2010

Evaluation Notes Bergen COURSE Spring, 2010

Evaluation Notes Bergen COURSE Spring, 2010. Petra Todd University of Pennsylvania Department of Economics. The Evaluation Problem. Will study econometric methods for evaluating effects of active labor market programs Employment, training and job search assistance programs

By mahina
(152 views)

情報セキュリティ特論( 3 )

情報セキュリティ特論( 3 )

情報セキュリティ特論( 3 ). 黒澤 馨 (茨城大学) kurosawa@mx.ibaraki.ac.jp. 演習 (1). One-time pad について考える。 鍵 K=(001101) で、平文 M=(111111) を 暗号化せよ。 C=K+M =(001101)+(111111) =(110010). 演習 (1). One-time pad について考える。 鍵 K=(001101) で、暗号文 C=(101101) を 復号せよ。 M=K+C =(001101)+(101101)

By monte
(151 views)

Robust Ranking of Uncertain Data

Robust Ranking of Uncertain Data

Robust Ranking of Uncertain Data. Da Yan and Wilfred Ng The Hong Kong University of Science and Technology. Outline. Background Probabilistic Data Model Related Work U-Pop k Semantics U-Pop k Algorithm Experiments Conclusion. Background.

By sheba
(125 views)

Finite Model Theory Lecture 18

Finite Model Theory Lecture 18

Finite Model Theory Lecture 18. Extended 0/1 Laws Or “Getting Real”. Outline. A better probabilistic model Probabilities of conjunctive queries Probabilities for FO Based on work done with N. Dalvi and G.Miklau, and on papers by Lynch, Shelah and Spencer. Annomalies 0/1 Laws.

By lel
(56 views)

Performance of a diagnostic test

Performance of a diagnostic test

Performance of a diagnostic test. Dagmar Rimek EPIET-EUPHEM Introductory Course 2012 Lazareto, Menorca, Spain. Based on the Lecture of 2011 by Steen Ethelberg. Outline. Performance characteristics of a test Sensitivity Specificity Choice of a threshold

By marlin
(258 views)

Heb.13:4

Heb.13:4

?. Heb.13:4. Gen.2:24. “disposable-marriage” “ wegwerp huwelijk ”. “I thought things would be different” “Ik dacht dat de dingen anders zouden zijn” “I want to do what I want to do” “ Ik wil doen wat ik wil ” “I’m not in love anymore” “ Ik ben niet meer verliefd ”

By hesper
(95 views)

Probabilities in Databases and Logics I

Probabilities in Databases and Logics I

Probabilities in Databases and Logics I. Nilesh Dalvi and Dan Suciu University of Washington. Two Lectures. Today: probabilistic database to model imprecisions probabilistic logics Tomorrow: probabilistic database to model incompletness random graphs. Motivation. Record reconciliation

By darva
(135 views)

Probabilistic Testability Measures

Probabilistic Testability Measures

Probabilistic Testability Measures. Student: Shih-Chieh Wu Advisor: Chun-Yao Wang 2005.12.26 Department of Computer Science National Tsing Hua University, Taiwan. Outline. Introduction Controllability Calculation with Aliasing-Free Assignments Conclusion & Future Work. Introduction.

By brac
(145 views)

ACTIVITES MENTALES

ACTIVITES MENTALES

ACTIVITES MENTALES. Préparez-vous !. Collège Jean Monnet. Question 1. Factoriser : 49 + 56x + 16x². Calculer l’aire du disque :. Question 2. 4 cm. R. Question 3. 5 cm. ?. U. 7 cm. V. Calculer RUV à 1° près. Enoncer la définition du livret correspondant à cette figure :.

By bliss
(96 views)

CS723 - Probability and Stochastic Processes

CS723 - Probability and Stochastic Processes

CS723 - Probability and Stochastic Processes. Lecture No. 07. In Previous Lectures.

By gregory-bernard
(125 views)

Heb.13:4

Heb.13:4

?. Heb.13:4. Gen.2:24. “disposable-marriage” “ wegwerp huwelijk ”. “I thought things would be different” “Ik dacht dat de dingen anders zouden zijn” “I want to do what I want to do” “ Ik wil doen wat ik wil ” “I’m not in love anymore” “ Ik ben niet meer verliefd ”

By judah-garza
(66 views)

Slides by Iddo Tzameret and Gil Shklarski.

Slides by Iddo Tzameret and Gil Shklarski.

Derandomizing BPP. Slides by Iddo Tzameret and Gil Shklarski. Adapted from Oded Goldreich’s course lecture notes by Erez Waisbard and Gera Weiss. PRG - Stronger Notion. Def :

By blake-jennings
(135 views)

3 Causal Models Part II: Counterfactual Theory and Traditional Approaches to Confounding (Bias?)

3 Causal Models Part II: Counterfactual Theory and Traditional Approaches to Confounding (Bias?)

3 Causal Models Part II: Counterfactual Theory and Traditional Approaches to Confounding (Bias?). Confounding, Identifiability, Collapsibility and Causal inference. Thursday reception at lunch time at SACEMA. Review Yesterday. Causes – definition Sufficient causes model Component causes

By caesar-ashley
(263 views)

Stock and Watson, Exercise 2.3

Stock and Watson, Exercise 2.3

Stock and Watson, Exercise 2.3. (a) Compute E(Y). We first need to find the density of y, p(y). Using formulas discussed in class (i.e., recovering the marginal density from the joint), we find Pr(Y=0) = .045 + .005 = .05 Pr(Y=1) = .709 + .241 = .95

By hasad-zimmerman
(138 views)

Novel Approaches to Adjusting for Confounding: Propensity Scores, Instrumental Variables and MSMs

Novel Approaches to Adjusting for Confounding: Propensity Scores, Instrumental Variables and MSMs

Novel Approaches to Adjusting for Confounding: Propensity Scores, Instrumental Variables and MSMs. Matthew Fox Advanced Epidemiology. What are the exposures you are interested in studying?.

By stephanie-gutierrez
(128 views)

Introduction to Biostatistics (ZJU 2008)

Introduction to Biostatistics (ZJU 2008)

Introduction to Biostatistics (ZJU 2008). Wenjiang Fu, Ph.D Associate Professor Division of Biostatistics, Department of Epidemiology Michigan State University East Lansing, Michigan 48824, USA Email: fuw@msu.edu www: http://www.msu.edu/~fuw. Chapters 4-5 Probability distribution.

By griffin-gross
(129 views)

Lecture 7. Basic statistical modeling

Lecture 7. Basic statistical modeling

Lecture 7. Basic statistical modeling. The Chinese University of Hong Kong CSCI3220 Algorithms for Bioinformatics. Lecture outline. Introduction to statistical modeling Motivating examples Generative and discriminative models Classification and regression Bayes and Naïve Bayes classifiers

By zenobia-rafal
(143 views)

View 1 pr PowerPoint (PPT) presentations online in SlideServe. SlideServe has a very huge collection of 1 pr PowerPoint presentations. You can view or download 1 pr presentations for your school assignment or business presentation. Browse for the presentations on every topic that you want.