'Gcd 55' presentation slideshows

Gcd 55 - PowerPoint PPT Presentation


Recursive

Recursive

Recursive. Recursive Definitions. In a recursive definition , an object is defined in terms of itself. We can recursively define sequences , functions and sets. Recursively Defined Sequences. Example: The sequence {a n } of powers of 2 is given by a n = 2 n for n = 0, 1, 2, … .

By eshana
(174 views)


View Gcd 55 PowerPoint (PPT) presentations online in SlideServe. SlideServe has a very huge collection of Gcd 55 PowerPoint presentations. You can view or download Gcd 55 presentations for your school assignment or business presentation. Browse for the presentations on every topic that you want.

Related Searches for Gcd 55
GCD

GCD

GCD. CSCI 284/162 Spring 2009 GW. Z m. Definition: a  b ( mod m)  m divides a-b Z m is the “ring” of integers modulo m : 0, 1, 2, …m-1 with normal addition and multiplication, performed modulo m

By tevy (124 views)

GCD

GCD

??. ??????????????GCD(Risa/Asir)?????????????GCD????????. ??. Wu???????????????????????????? (???

By lulu (120 views)

Recursive GCD Demo

Recursive GCD Demo

Recursive GCD Demo. public class Euclid { public static int gcd ( int p , int q ) { if ( q == 0 ) return p ; else return gcd ( q , p % q ); } public static void main ( String [] args ) { System . out . println ( gcd ( 1272 , 216 )); } }.

By schamber (0 views)

Recursive GCD Demo

Recursive GCD Demo

Recursive GCD Demo. public class Euclid { public static int gcd ( int p , int q ) { if ( q == 0 ) return p ; else return gcd ( q , p % q ); } public static void main ( String [] args ) { System . out . println ( gcd ( 1272 , 216 )); } }.

By noah-cervantes (76 views)

Recursive GCD Demo

Recursive GCD Demo

Recursive GCD Demo. public class Euclid { public static int gcd ( int p , int q ) { if ( q == 0 ) return p ; else return gcd ( q , p % q ); } public static void main ( String [] args ) { int p = Integer . parseInt ( args [ 0 ]); int q = Integer . parseInt ( args [ 1 ]);

By cai (76 views)

Euclid Algorithm: GCD

Euclid Algorithm: GCD

Euclid Algorithm: GCD. GCD:. Input integers a,b;. Step 1:. If a  b. then X  a, Y  b;. else X  b, Y  a;. Step 2:. Z  the remainder of X  Y;. Step 3:. If Z = 0. then the GCD is Y;. else X  Y, Y  Z,. do steps 2, 3 again. Problem Solved. On integers. On what?.

By nova (129 views)

GCD 介绍

GCD 介绍

GCD 介绍. Grand Central Dispatch. Agenda. GCD 简介 应用示例 Demo 其他. GCD 简介.

By abraham-clay (113 views)

Division and GCD

Division and GCD

Division and GCD. CSC2110 Tutorial 7 Darek Yung. Outline. Self Introduction Announcement Quick Review Example Q & A. Self Introduction. Yung Chun Kong, Darek Responsible for Topics in Number Theory Tutorial 7 – 9 The third class work Office: SHB 115

By zinnia (98 views)