1 / 24

Charged Kaon experiment at CERN SPS - NA48/2

ICHEP, 2004. Charged Kaon experiment at CERN SPS - NA48/2. The goals Experiment configuration Asymmetry ( A g ) analysis ( status and prospects ) Rare decays. V.Kekelidze (JINR, Dubna) for the Collaboration NA48/2:

sezja
Télécharger la présentation

Charged Kaon experiment at CERN SPS - NA48/2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ICHEP, 2004 Charged Kaon experiment at CERN SPS - NA48/2 • The goals • Experiment configuration • Asymmetry (Ag) analysis (status and prospects) • Rare decays V.Kekelidze (JINR, Dubna) for the Collaboration NA48/2: Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Wien V.Kekelidze, JINR

  2. Physics motivation High precision study of charged Kaon decays as the probes for: • Qualitative tests of the SM & search for new physics  direct CP violation • high accuracy tests of low energy QCD (PT)  rare decays • tests of other models  high precision measurement of K±decay parameters V.Kekelidze, JINR

  3. Rare decays: to testPT & search for ACP Ke4 - scat. length ( ) < 1102 ( > 106events) • K   , K  0 DE K  e+e,K  + , Ke2, K l  l+l, K  0 , K  0l+l, … etc. The Goals of NA48/2 • Direct CP violation in K±  ±+ , K±  ±00 M(u)1 + gu, u= (2mK/m2) (mK/3 –E*-odd) (Ag) < 210 – 4(limited bystatistics) g + -g - Ag = ———— g+ +g- • Semileptonic decays: Ke3, K3 contribution to the measurement of |Vus| search for fT, fS V.Kekelidze, JINR

  4. |Ag| experiments by 2002 10-2 1.0E-02 NA48/2 10-3 1.0E-03 new physics SUSY 10-4 1.0E-04 SM 10-5 1.0E-05 10-6 1.0E-06 Ag: theory & experimental limits E.Shabalin-98 G.D’Ambrosio,G.Isidori, G.Martinelli-99 E.Shabalin-01,-04 I.Scimemi-04 G.D’Ambrosio-97 L.Maiani,N.Paver-95 V.Kekelidze, JINR

  5. The simultaneousK+and K-beams NA48 Set-Up B+ magnet 54 60 66 PK spectra, 603GeV/c DFDF Quadrupole 2nd Quadruplet ACHROMAT vacuum tank He tank + spectrometer 10 cm FRONT-END ACHROMAT 200 250 m 1cm beams coincide within <1mm 114m decay volume 50 100 NA48/2 experiment configuration TAX 17 TAX 18 FDFD K+ K+ focusing beams K- K- not to scale V.Kekelidze, JINR

  6. The simultaneousK+and K-beams NA48 Set-Up B+ magnet DFDF Quadrupole 2nd Quadruplet ACHROMAT vacuum tank He tank + spectrometer 10 cm FRONT-END ACHROMAT 200 250 m 1cm 50 100 NA48/2 experiment configuration alternate thebeam lines(weekly) TAX 17 TAX 18 FDFD K+ K+ focusing beams K- K- not to scale V.Kekelidze, JINR

  7. The simultaneousK+and K-beams NA48 Set-Up B+ magnet DFDF Quadrupole 2nd Quadruplet ACHROMAT vacuum tank He tank + spectrometer 10 cm FRONT-END ACHROMAT 200 250 m 1cm 50 100 NA48/2 experiment configuration alternate thebeam lines(weekly) TAX 17 TAX 18 FDFD K- K- focusing beams K+ K+ not to scale V.Kekelidze, JINR

  8. The simultaneousK+and K-beams NA48 Set-Up B- magnet DFDF Quadrupole 2nd Quadruplet ACHROMAT vacuum tank He tank + spectrometer 10 cm FRONT-END ACHROMAT 200 250 m 1cm 50 100 NA48/2 experiment configuration alternate magnet polarity daily (’03) 3-4h (’04) TAX 17 TAX 18 FDFD K+ K+ focusing beams K- K- not to scale V.Kekelidze, JINR

  9. The simultaneousK+and K-beams NA48 Set-Up B+ magnet DFDF Quadrupole 2nd Quadruplet ACHROMAT vacuum tank He tank + spectrometer 10 cm FRONT-END ACHROMAT 200 250 m 1cm 50 100 NA48/2 experiment configuration alternate magnet polarity daily (’03) 3-4h (’04) TAX 17 TAX 18 FDFD K+ K+ focusing beams K- K- not to scale V.Kekelidze, JINR

  10. Top view of the setup Z axis (beam direction) Saleve Jura • ASJ = (AS+AJ)/2g =Ag2gphysics asymmetries (to mask the results ASJ ,AS&AJ are presented with OFFSETS !) X axis • A± = (A++A)/2 = (AS-AJ)/2 asymmetry induced by the experimental setup ( many of the effects observed in A±cancel in ASJ) Ag measurement (acceptance cancellation) Physical asymmetries: • AS→ slope of ratio U(K+ B+) / U(K- B-) • AJ→ slope of ratio U(K+ B-) / U(K- B+) Apparatus-induced asymmetries: • A+→ slope of ratio U(K+ B+) / U(K+ B-) • A→ slope of ratio U(K- B+) / U(K- B-) V.Kekelidze, JINR

  11. NA48/2 runs 2003 run:~ 50 days (~ 1 month stable conditions) 2004 run: ~ 60 days ~ 200 TB of data recorded V.Kekelidze, JINR

  12. Statistics ~ 1 month of data taking in 2003 at stable conditions have been analyzed V.Kekelidze, JINR

  13. Time-dependence of alignment MSaleve–MJura, keV/c2 Max. DCH4 shift of 70 m Day-sample Spectrometer calibration • P = P0∙(1+β)∙(1+qbP0) P0 – measured momentum; P – corrected momentum; q – track charge; b – magnetic field sign. • Time-dependent corrections: • β– for magnetic field integral • – for spectrometer misalignment V.Kekelidze, JINR

  14. K Events even pion in beam pipe |V| odd pion in beam pipe K+ Events U Dalitz plot for K  + - & M(3) SS1-3 data: > 1120 million events selected M3π, GeV/c2 M3π, GeV/c2 V.Kekelidze, JINR

  15. AS+offset AJ+offset A+ A- Asymmetry vs. PK(1 month ’03 data,preliminary) K±p±p+p- c2/ndf 6/11 ASJ + offset = 0 ± 0,117.10-3 (AS+AJ)/2 + offset Statistical error of Ag: 2,7.10-4 Statistical error of A : 2,7.10-4 PK, GeV/c PK, GeV/c c2/ndf 6,7/11 A = (0,131 ± 0,117).10-3 (A++A-)/2 V.Kekelidze, JINR

  16. AS+offset AJ+offset A+ A- Asymmetry vs. time (1 month ’03 data,preliminary) K±p±p+p- c2/ndf 13,5/12 (AS+AJ)/2 + offset Day-sample pair Day-sample pair c2/ndf 5,6/12 (A++A-)/2 Day-sample pair Day-sample pair V.Kekelidze, JINR

  17. Results on Ag one month of NA48/2 data taking in 2003: • K± +  ±Agc= ( .. 2.7)∙10-4 • K±00 ± (36M events) Ag0 = ( 5.0)∙10-4 uncertainties dominated by the statistical errors! • Other experiment data onAgc • BNL (1970): (- 7.0 ± 5.3)∙10-3 • FNAL, HyperCP –2000 (preliminary)(2.2±1.5±3.7)∙10-3 • Serpukhov data onAg0 • I.V.Ajinenko et al., PLB567(2003)159.: (5.1 ± 2.8 )∙10-3 • G.A.Akopdzhanov, hep-ex/0406008 prelim.:(0.2 ± 1.9 )∙10-3 V.Kekelidze, JINR

  18. Rare Decays of Charged Kaons 1 month of running in 2003 V.Kekelidze, JINR

  19. K±π+π-e±ν (Ke4) decays • Physics interest: • Low energy ππscattering predicted by the Chiral Perturbation Theory first principles. • Predicted by the PTa00=0.220±0.005 related to the qq QCD condensate [Colangelo, Gasser, Leutwyler, hep-ph/0103088] • ππscattering length a00can be determined from form-factors of Ke4decays. • Previous measurements: • Geneva-Saclay (1977): 30,000 events • Brookhaven E865 (2001): 400,000 events a00= 0.216±0.013stat 2 experiments, errors > theoretical uncertainties. V.Kekelidze, JINR

  20. Ke4 hypothesis K- mass 0.3 0.4 m(), GeV/c2 0 0.1 0.2 m(e), GeV/c2 Background K±+-e±ν (Ke4) (1 month ’03 data,preliminary) Cabibbo-Maksymowicz variables [backgr. in red] 2003 data: expected > 500k events (background ~ 0.6 %) V.Kekelidze, JINR

  21. Measurement of a0-a2 pion scattering length from K  (3) decays • A threshold effect in M(00) has been observed • for the first time by NA48/2 thanks to • high resolution in energy • high statistics collected • The rescattering of +  -  0 0 • in the decay K  + -   0 0  • allows to study of a0-a2 • in a very accurate way N. Cabibbo arXiv: hep-ph 0405001 V.Kekelidze, JINR

  22. K±  ±+- > 1000ev. (PDG: ~ 800) K±±e+e- & K±±+- (1 month ’03 data,preliminary) K±  ± e+e- > 2600ev. Form-factor M(± e+e-), GeV/c2 • low background (1-2%) • expected data sample in 2003-2004 • comparable to the World best sample V.Kekelidze, JINR

  23. K- K- K±  π±   decays (1 month ’03 data,preliminary) ~ 100 x world statistics • Physics interest: • O(p2) PT amplitude vanishes; • O(p4) amplitude is computed (up to an unknown parameter); • Fit of M distribution to check O(p6) PTexpansion. first NA48/2 data V.Kekelidze, JINR

  24. Summary • NA48/2 has completed the data taking • ~4 B ofK±  ± +-decays are recorded, which allow to achieve the statistical precision of (Ag) < 210-4 • World largest multipurpose sample of charged kaon decays is accumulated to study various K±rare decays V.Kekelidze, JINR

More Related