1 / 28

Transverse momentum vs. multiplicity correlations

Transverse momentum vs. multiplicity correlations. Agnieszka Wojtaszek-Szwarc Jan Kochanowski University. NA61/SHINE and NA49 meeting in Warsaw 10-14.02.2014. Analysis of p T - <N> correlation. Pb+Pb collision at 158, 80, 40, 30 and 20A GeV

shanae
Télécharger la présentation

Transverse momentum vs. multiplicity correlations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transverse momentum vs. multiplicity correlations AgnieszkaWojtaszek-Szwarc Jan Kochanowski University NA61/SHINE and NA49 meeting in Warsaw 10-14.02.2014

  2. Analysis of pT - <N> correlation • Pb+Pb collision at 158, 80, 40, 30 and 20A GeV • Only forward rapidity tracks 1.1<yCMS < 2.6, (rapidity is calculated assuming pion mass for all particles) with 0.005< pT <1.5 GeV/c have been used in this analysis. • Analysis havebeen done in narrow centrality bins A.Wojtaszek-Szwarc 14-02-2014

  3. Example of pT- N correlations Pb+Pb at 160A GeV Centrality 3.5% – 4.0% A.Wojtaszek-Szwarc 14-02-2014

  4. b parameter vs. centrality – all charged particles A.Wojtaszek-Szwarc 14-02-2014

  5. b parameter vs. centrality – negatively charged particles A.Wojtaszek-Szwarc 14-02-2014

  6. b parameter vs. centrality – positively charged particles A.Wojtaszek-Szwarc 14-02-2014

  7. VENUS data Pb + Pb 158A GeV 4 centrality bins – 25 k events in each bin A.Wojtaszek-Szwarc 14-02-2014

  8. <pT> vs. N , negatively charged particles. MC data Pb+Pb at 158A GeV. Collision parameter 1 fm< b <1.5 fm. 0.005 < pT < 1.5 4.0 < y < 5.5 VENUS + acceptane b = 3.21  1.0 VENUS + reconstruction + acceptance b = 3.81  1.1 A.Wojtaszek-Szwarc 14-02-2014

  9. VENUS – top panelsVENUS + acceptance – bottompanels A.Wojtaszek-Szwarc 14-02-2014

  10. VENUS + reconstruction – top panelsVENUS + reconstruction + acceptance – bottompanels A.Wojtaszek-Szwarc 14-02-2014

  11. Negatively charged particles, centrality 1.0-1.5 Venus Venus + reconstruction A.Wojtaszek-Szwarc 14-02-2014

  12. <pT> vs. N , negatively charged particles. MC data Pb+Pb at 158A GeV. Collision parameter 5 fm < b <5.5 fm. 0.005 < pT < 1.5 4.0 < y < 5.5 VENUS + acceptane b = 3.21  1.0 VENUS + reconstruction + acceptance b = 3.81  1.1 A.Wojtaszek-Szwarc 14-02-2014

  13. <pT> vs. N , negatively charged particles. MC data Pb+Pb at 158A GeV. Collision parameter 9 fm < b <9.5 fm. 0.005 < pT < 1.5 4.0 < y < 5.5 VENUS + acceptane b = 0.06  0.91 VENUS + reconstruction + acceptance b = 0.03  0.9 A.Wojtaszek-Szwarc 14-02-2014

  14. <pT> vs. N , negatively charged particles. MC data Pb+Pb at 158A GeV. Collision parameter 12 fm < b <12.5 fm. 0.005 < pT < 1.5 4.0 < y < 5.5 VENUS + acceptane b = -2.32  0.8 VENUS + reconstruction + acceptance b = -5.06  1.0 A.Wojtaszek-Szwarc 14-02-2014

  15. A.Wojtaszek-Szwarc 14-02-2014

  16. VENUS data Pb + Pb 80A GeV 2 centrality bins – 25 k events in each bin A.Wojtaszek-Szwarc 14-02-2014

  17. <pT> vs. N , negatively charged particles. MC data Pb+Pb at 80A GeV. Collision parameter 1 < b <1.5 0.005 < pT < 1.5 4.0 < y < 5.5 VENUS + acceptane b = 3.54  1.14 VENUS + reconstruction + acceptance b = 1.59  0.81 A.Wojtaszek-Szwarc 14-02-2014

  18. Negatively charged particles, centrality 1.0-1.5 Venus Venus + reconstruction A.Wojtaszek-Szwarc 14-02-2014

  19. VENUS – top panelsVENUS + acceptance – bottompanels A.Wojtaszek-Szwarc 14-02-2014

  20. VENUS + reconstruction – top panelsVENUS + reconstruction + acceptance – bottompanels A.Wojtaszek-Szwarc 14-02-2014

  21. <pT> vs. N , negatively charged particles. MC data Pb+Pb at 80A GeV. Collision parameter 5 fm < b < 5.5 fm 0.005 < pT < 1.5 4.0 < y < 5.5 VENUS + acceptane b = 2.77  1.10 VENUS + reconstruction + acceptance b = 1.03  0.79 A.Wojtaszek-Szwarc 14-02-2014

  22. A.Wojtaszek-Szwarc 14-02-2014

  23. Correction of influence of detector acceptance on final results • For one collision energy we need 20 centrality bins. • 25 000 events in each bin. • Estimated time – 10 – 20 weeks for simulations of one collision energy (simulated data are stored on the tapes and reading them is time consuming process). • For preparation full statistic for all 5 collision energies we need 2 years. • Differences of value b for collision energy 158 and 80A GeV are smaller then statistical uncertainty of experimental data. • Good solution is to check the influence of detector acceptance for 3 different centrality bins for each collision energy. If the influence is too small we should publish data without any correction. A.Wojtaszek-Szwarc 14-02-2014

  24. Additional slides A.Wojtaszek-Szwarc 14-02-2014

  25. Additional slides A.Wojtaszek-Szwarc 14-02-2014

  26. Additional slides A.Wojtaszek-Szwarc 14-02-2014

  27. Additional slides A.Wojtaszek-Szwarc 14-02-2014

  28. Additional slides A.Wojtaszek-Szwarc 14-02-2014

More Related