1 / 48

Measurement of neutrino mass with cryogenic detectors

Measurement of neutrino mass with cryogenic detectors. The birth of the neutrino. Neutrino oscillations => neutrino mass ≠ 0. <m n > from Cosmology. m  = 0 eV. m  = 1 eV. m  = 7 eV. m  = 4 eV. S <m n > <.4-.7 eV. Measurement (or limit ) on neutrino mass by single beta decay.

silver
Télécharger la présentation

Measurement of neutrino mass with cryogenic detectors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measurement of neutrino mass with cryogenic detectors The birth of the neutrino Ettore Fiorini, Trento

  2. Neutrino oscillations => neutrino mass ≠ 0 Ettore Fiorini, Trento

  3. <mn> from Cosmology m = 0 eV m = 1 eV m = 7 eV m = 4 eV S<mn> <.4-.7 eV Ettore Fiorini, Trento

  4. Measurement (or limit ) on neutrino mass by single beta decay Ettore Fiorini, Trento

  5. Tiny effect -> Ettore Fiorini, Trento

  6. Two different techniques are complementary due to different systematics KATRIN MARE Ettore Fiorini, Trento

  7. Katrin 3H => 3He + e- + nemn< 2.2 eV=> KATRIN < .2 eV Ettore Fiorini, Trento

  8. The cryogenic or thermal detectors Ettore Fiorini, Trento

  9. Thermal sensor absorber crystal Incident particle Excellent resolution<1 eV~ 2eV @ 6 keV ~10 eV~keV@ 2 MeV Ettore Fiorini, Trento

  10. First ideas 1880 => Langley => resistive bolometers for infrrared from SUN1905 => Curie et Laborde => calorimetric measurement of radioactivity 1927 => Ellis and Wuster => heat less then expected => the neutrino1935 => Simon => sensitivity enhanced by lowering the temperature1983 => T.Niinikoski =>observe pulses in resistors due to cosmic rays => McCammon et al (NASA-Wisconsin) Low temp. detectors for astrophysics and neutrino mass measurement1984 => Fiorini and Niinikoski Low temperature detectors for rare events Ettore Fiorini, Trento

  11. The first mini-meeting on thermal detectors(Ringberg castle 1986) Ettore Fiorini, Trento

  12. Ettore Fiorini, Trento

  13. Ettore Fiorini, Trento

  14. 210Po a line Energyresolution of a TeO2 crystal of 5x5x5 cm3 (~ 760 g ) : 0.8 keV FWHM @ 46 keV 1.4 keV FWHM @ 0.351 MeV 2.1 keV FWHM @ 0.911 MeV 2.6 keV FWHM @ 2.615 MeV 3.2 keV FWHM @ 5.407 MeV (the best aspectrometer so far Ettore Fiorini, Trento

  15. Non equilibrium detectors • STJ Superconducting tunnel junctions • SSG Superheated superconducting granules . The field does not enter more in the granule. Often SQUID pickup Suggested for In solar neutrino detection. Considered for Dark Matter Experiments => Superfluid 3He and 4He detectors (rotons) . Also considered for Solar neutrinos Comparison with conventional detectors: => Slow propagation of the vibration inside the absorber Kapitza resistence detector => heat sink (slow rise and decay times) => Possible localizazion of the event (TES) Ettore Fiorini, Trento

  16. Possible “thermometers” SuperheatedSuperconductingGranules Ettore Fiorini, Trento

  17. Microcalorimeters for 187Re ß-decay MIBETA: Kurie plotof 6.2 ×106 Re ß-decayevents (E > 700 eV) MANU2 (Genoa) metallic Rhenium m n< 26 eV Nucl. Phys. B (Proc.Suppl.) 91 (2001) 293 MIBETA (Milano) AgReO4 mn < 15 eV 10 crystals: 8751 hoursx mg (AgReO4) Nucl. Instr. Meth. 125 (2004) 125 MARE (Milano, Como, Genoa, Trento, US, D) Phase I : mn < 2.5 eV E0 = (2465.3 ± 0.5stat ± 1.6syst) eV m2n= (-112 ± 207 ± 90) eV2 hep-ex/0509038 Ettore Fiorini, Trento

  18. A new fact in Material Science and Nuclear Physics => Beta Environmenthal Fine Structure 187 Re => 187 Os + e- + ˉneDE = 2.5 keV One can determine the P to S ratioin the decay Ettore Fiorini, Trento

  19. MARE experiment Microcalorimeter Arrays for a Rhenium Experiment 187Re as ß-emitter: isotopic abundance 62.8% 5/2+→ 1/2-unique first forbidden transition Genova: metallic Re (MANU) Milano: AgReO4 (MIBETA) previous experiments: Ettore Fiorini, Trento dielectric AgReO4 crystal

  20. Other interesting results in nuclear physics obtatined with cryogenic detctors e- + 163 Ho => 163 Os + ne also for searches on neutrino mass 113 Cd => 113 I + e- + ˉne t1/2 = (9+1) x 1015 y e- + 123 Te => 123 Sb + ne t1/2 > 1015 y e- + Ga => 71 Ge + ne => for solar neutrinos First discovery of the decay 209 Bi => 204 Tl + a e- + 7 Be => 7 Li + ne => for solar neutrinos Experiments with heavy ions Ettore Fiorini, Trento

  21. What about the nature of the neutrino and its mass? Ettore Fiorini, Trento

  22. Neutrinoless double beta decay and Majorana neutrinos : RIGHT : LEFT → → <==> Majorana =>1937 Ettore Fiorini, Trento

  23. 1. (A,Z) => (A,Z+2) + 2 e- + 2 ne¯2. (A,Z) => (A,Z+2) + 2 e- + c ( …2,3 c)3. (A,Z) => (A,Z+2) + 2 e- Ettore Fiorini, Trento

  24. Ettore Fiorini, Trento

  25. - - e - e u e d n W e u W n e d W d u d W - e u 2n - bb decay n n e e 0n - bb decay Neutrinoless bb decay Ettore Fiorini, Trento

  26. e- e- Experimental approach Geochemical experiments82Se = > 82Kr, 96Zr = > 96Mo, 128Te = > 128Xe (non confirmed), 130Te = > 130TeRadiochemical experiments238U = > 238Pu (non confirmed) Direct ex-periments Source = detector (calorimetric) Sourcedetector Ettore Fiorini, Trento

  27. Ettore Fiorini, Trento

  28. Ettore Fiorini, Trento

  29. Claim of Evidence for 0 in 76Ge Looks good to me…not to me (E.F.) <m> ~ 0.2 to 0.3 eV Single-site events in detectors 2, 3, 4, 5 (56.6 kg-y). H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. E17, 505 (2008) Ettore Fiorini, Trento

  30. 2P1/2 650 nm 493 nm 4D3/2 metastable 47s 2S1/2 Experimental situation NEMO - SuperNEMO CUORICINO GERDA CUORE MOON MOON SNO++ EXO CUORE

  31. Double beta decay with nucleqr emulsions Ettore Fiorini, Trento

  32. Searches with thermal detectors CUORE R&D (Hall C) CUORE (Hall A) Cuoricino (Hall A) Ettore Fiorini, Trento

  33. Mass increase of bolometers total mass [kg] year Ettore Fiorini, Trento

  34. Ettore Fiorini, Trento

  35. Search for the 2b|on in 130Te (Q=2529 keV) and other rare events At Hall A in the Laboratori Nazionali del Gran Sasso (LNGS) 18 crystals 3x3x6 cm3 + 44 crystals 5x5x5 cm3 = 40.7 kg of TeO2 Operation started in the beginning of 2003 => ~ 4 months Background .18±.01 c /kev/ kg/ a T 1/20n (130Te) > 3.1 x 1024 y <mn> .16 -.84 eV Klapdor 0.1 – 0.9 2modules, 9detector each, crystal dimension3x3x6 cm3 crystal mass330 g 9 x 2 x 0.33 = 5.94 kg of TeO2 11modules, 4detector each, crystal dimension5x5x5 cm3 crystal mass790 g 4 x 11 x 0.79 = 34.76 kg of TeO2 Ettore Fiorini, Trento

  36. The present CUORICINOresult Ettore Fiorini, Trento

  37. Present Cuoricino region Possible evidence (best value 0.39 eV) With the same matrix elements the Cuoricino limit is 0.53 eV “quasi” degeneracy m1 m2  m3 Inverse hierarchy m212= m2atm Direct hierarchy m212= m2sol Cosmological disfavoured region (WMAP) Ettore Fiorini, Trento

  38. CUORE Ettore Fiorini, Trento

  39. The CUORE collaboration Ettore Fiorini, Trento

  40. Ettore Fiorini, Trento

  41. Construction of CUORE 4 Ettore Fiorini, Trento

  42. SICCAS/INFN Clean Room Ettore Fiorini, Trento

  43. CUORE expected sensitivity disfavoured by cosmology In 5 years: Strumia A. and Vissani F. hep-ph/0503246 Ettore Fiorini, Trento

  44. Other possible candidates for neutrinoless DBD 130Tehigh transition energy and34% di isotopic abundance Test of CUORE, with CUORICINO Ettore Fiorini, Trento

  45. Scintillation + heat Ettore Fiorini, Trento

  46. Ettore Fiorini, Trento

  47. Ettore Fiorini, Trento

  48. CONCLUSIONS Neutrino oscillations exist => Dm n 2≠ 0 Determination of the absolute value of <mn> becomes imperative Theory indicates <mn> from a from few to a few tens of meV. Single beta decay constraints directly <mn> but still far from predictions Future experiment on neutrinoless double beta decay could determine <mn > at the level predicted by neutrino oscillations under the inverse hierarchy hypothesis, and ascertain if neutrino is a Majorana particle The present claim for this phenomenon indicating <mn>~0.44 eVis not confirmed by CUORICINO The most advanced and sometime not yet tested nuclear physics techniques are being studied for future DBD experiment Determination of neutrino mass involves already nuclear and sub nuclear physics. Its peculiar multidisciplinarity involves fundamental problems in astroparticle physics, radioactivity’, materials, geochronology ecc. Very stimulating for young people Ettore Fiorini, Trento

More Related