1 / 31

Nitrogen fluorescence in air for observing extensive air showers

Nitrogen fluorescence in air for observing extensive air showers. B . Keilhauer. 8th Air Fluorescence Workshop Karlsruhe, 12 – 14 September 2011. Delegation of the workshop: M. Bohacova M. Fraga B. Keilhauer J. Matthews N. Sakaki Y. Tameda Y. Tsunesada A. Ulrich.

Télécharger la présentation

Nitrogen fluorescence in air for observing extensive air showers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nitrogen fluorescence in air for observing extensive air showers B. Keilhauer 8th Air Fluorescence WorkshopKarlsruhe, 12 – 14 September 2011 Delegation of the workshop: M. BohacovaM. FragaB. KeilhauerJ. MatthewsN. SakakiY. TamedaY. TsunesadaA. Ulrich http://www.kceta.kit.edu/8afw2011/

  2. Interpretation of Cosmic Rays Eur. Phys. J. Plus (2012) 127: 87 V. Berezinsky, UHECR2012 B. Keilhauer AtmoHEAD 2013

  3. Interpretation of Cosmic Rays- scaling of the absolute energy - direct data of the experiments re-scaled data J(E)E3 , eV2 m-2 s-1 sr-1 E , eV E , eV Prog. Part. Nucl. Phys. 63(2009) 293 B. Keilhauer AtmoHEAD 2013

  4. Interpretation of Cosmic Rays- determination of the composition - M. Unger, UHECR2012 Astroparticle Physics 39–40 (2012) 33–43 B. Keilhauer AtmoHEAD 2013

  5. Detection Principles Transmission B. Keilhauer AtmoHEAD 2013 Emission of isotropic Fluorescence- and forward-beamed Cherenkov-light Air shower Transmission Shower axis

  6. A.N. Bunner, PhD thesis, Cornell, 1967 Fluorescence Light Production • excitation of nitrogen in air because of energy deposit from EAS • direct excitation of 1N via ionization • collisions with low energy electrons with spin change for 2P • down cascading from higher level of 2P • spontaneous de-excitation → fluorescence light B. Keilhauer AtmoHEAD 2013

  7. Fluorescence Light Production • excitation of nitrogen in air because of energy deposit from EAS • spontaneous de-excitation → fluorescence light • atmosphere dependence because of quenching 800 hPa, 293 K NIM A597(2008)41 B. Keilhauer AtmoHEAD 2013

  8. Formulas for a Fluorescence Description B. Keilhauer AtmoHEAD 2013

  9. Formulas for a Fluorescence Description a) absolute yield value of a reference transmission: fluorescence yield in photons emitted per MeV of energy deposited at given experimental conditions p0 and T0 B. Keilhauer AtmoHEAD 2013

  10. Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum: ratio of individual transitions of the spectrum between about 280 and 430 nm to the strength of the transitions at 337.1 nm B. Keilhauer AtmoHEAD 2013

  11. Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum c) pressure dependence in dry air: characteristic pressure of dry air at experimental conditions T0 B. Keilhauer AtmoHEAD 2013

  12. Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum c) pressure dependence in dry air d) humidity quenching: p′H2O(λ, T0) - characteristic pressure of water vapor at experimental conditions T0 B. Keilhauer AtmoHEAD 2013

  13. Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum c) pressure dependence in dry air d) humidity quenching e) temperature-dependent collisional cross sections: αλ- exponent of the power law describing the T-dependent collisional cross sections for each λ B. Keilhauer AtmoHEAD 2013

  14. Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum c) pressure dependence in dry air d) humidity quenching e) temperature-dependent collisional cross sections • Non-radiative de-excitation of excited nitrogen molecules • only 1 value for each band system B. Keilhauer AtmoHEAD 2013

  15. Strategy • Describing the spectrum and the dependences on atmospheric conditions: • common altitude-dependent shape • requires adequate knowledge of atmospheric profiles • Finding the absolute scaling: • direct shift of reconstructed primary E of air showers b) wavelengths-dependent spectrum c) pressure dependence in dry air d) humidity quenching e) temperature-dependent collisional cross sections B. Keilhauer AtmoHEAD 2013

  16. Suggested Reference Fluorescence Description - spectral intensities - spectral intensities Iλ as measured by AIRFLY; 34 transitions between 296 and 428 nm The sum of the yield differs by -1.66% (Ulrich et al.), +2.08% (Nagano et al.),-1.70% (FLASH). B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

  17. Suggested Reference Fluorescence Description - pressure dependence- • p‘air: • one value for each band system; • weighted averages for 2P(0,x), (1,x), (2,x), (3,x), 1N (0,x), (1,x), GH (0,x) derived from AIRFLY measurements; • for weak transitions, as 2P(4,x), further GH, estimates from their publicatation B. Keilhauer AtmoHEAD 2013

  18. Suggested Reference Fluorescence Description - humidity dependence- • p‘H2O: • one value for each band system; • weighted averages for 2P (0,x), (1,x), (2,x), 1N (0,x) derived from Sakaki et al. measurements using the photon yield and the lifetime technique • for weak transitions of 2P(3,x) and 2P(4,x) use weighted average of p‘H2O of 2P (1,x) and (2,x) bands (4.8% of the total emission at p0, T0) • for all others set to Zero (2.1% of the total emission at p0, T0) B. Keilhauer AtmoHEAD 2013

  19. Systematic study from Sakaki et al. - humidity dependence- N. Sakaki, 8AFW 2011 B. Keilhauer AtmoHEAD 2013

  20. Suggested Reference Fluorescence Description - temp.-dep. collisional cross sections - • α-coefficient: • one value for each band system; • weighted average for 2P(0,x) and 1N(0,x) derived from AIRFLY measurements • for weak transitions of 2P(3,x) and 2P(4,x) use weighted average of p‘H2O of 2P (1,x) and (2,x) bands (4.8% of the total emission at p0, T0) • for all others set to Zero (2.1% of the total emission at p0, T0) B. Keilhauer AtmoHEAD 2013

  21. Parameter Set for the Reference Fluorescence Description B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

  22. „academic“ fluorescence yield - scaling according Nagano et al. (2004) - Y. Tsunesada et al. , proc. ICRC 2013

  23. „academic“ fluorescence yield- variations of p‘H2O - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

  24. „academic“ fluorescence yield- variations of - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

  25. Application to air shower reconstruction- same absolute scaling, Auger reconstruction framework - Mean: -9.98 % 0.34 % Mean: 0.71 g cm-2 1.63 g cm-2 RMS: 1.76 % 1.22 % RMS: 1.25 g cm-2 3.56 g cm-2 B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

  26. Systematics in air shower reconstruction- same absolute scaling, Auger reconstruction framework - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

  27. Systematics in air shower reconstruction- same absolute scaling, Auger reconstruction framework - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

  28. Systematics in air shower reconstruction- same absolute scaling, Auger reconstruction framework - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

  29. Application to air shower reconstruction- different absolute scaling - both „Nagano“-scaling TA „Kakimoto“-scaling Mean: 0.3 % Mean: -6.6 g cm-2 Mean: 8.6 % Mean: 0.7 g cm-2 B. Keilhauer AtmoHEAD 2013

  30. Influence of atmospheric profiles monthly models GDAS Astropart. Phys. 35 (2012) 591 B. Keilhauer AtmoHEAD 2013

  31. Conclusion • a reference fluorescence description has been developed • all known atmospheric effects are implemented • application to air shower reconstructions are done for Auger and TA, but not used in the official experiments‘ reconstructions yet • first details are published in the proc. of UHECR2012 • more in the proc. of ICRC 2013

More Related